Skip to main content

Microfluidic Approach for Highly Efficient Viral Transduction

  • Protocol
  • First Online:
Cell Reprogramming for Immunotherapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2097))

Abstract

Lentiviral vectors enable gene transfer into target cells, but manufacturing is complex, scale-limited, and costly. Here, we describe the use of microfluidic devices for efficient ex vivo gene transfer. Up to four- to fivefold reductions in viral vector usage and two- to fourfold reductions in transduction times can be obtained by using this method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nguyen TK, Morse SJ, Fleischman AG (2016) Transduction-transplantation mouse model of myeloproliferative neoplasm. J Vis Exp (118):54624

    Google Scholar 

  2. Wernig G et al (2006) Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood 107(11):4274–4281

    Article  CAS  Google Scholar 

  3. Cartier N et al (2009) Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326(5954):818–823

    Article  CAS  Google Scholar 

  4. Cavazzana-Calvo M et al (2010) Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature 467(7313):318

    Article  CAS  Google Scholar 

  5. Boztug K et al (2010) Stem-cell gene therapy for the Wiskott–Aldrich syndrome. N Engl J Med 363(20):1918–1927

    Article  CAS  Google Scholar 

  6. Maude SL et al (2014) Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 371(16):1507–1517

    Article  Google Scholar 

  7. Lee DW et al (2015) T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385(9967):517–528

    Article  CAS  Google Scholar 

  8. Kochenderfer JN et al (2015) Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol 33(6):540

    Article  CAS  Google Scholar 

  9. Davis HE, Morgan JR, Yarmush ML (2002) Polybrene increases retrovirus gene transfer efficiency by enhancing receptor-independent virus adsorption on target cell membranes. Biophys Chem 97(2–3):159–172

    Article  CAS  Google Scholar 

  10. Flasshove M et al (1995) Ex vivo expansion and selection of human CD34+ peripheral blood progenitor cells after introduction of a mutated dihydrofolate reductase cDNA via retroviral gene transfer. Blood 85(2):566–574

    Article  CAS  Google Scholar 

  11. O’Doherty U, Swiggard WJ, Malim MH (2000) Human immunodeficiency virus type 1 spinoculation enhances infection through virus binding. J Virol 74(21):10074–10080

    Article  Google Scholar 

  12. Guo J et al (2011) Spinoculation triggers dynamic actin and cofilin activity facilitating HIV-1 infection of transformed and resting CD4 T cells. J Virol 2011:JVI-05170

    Google Scholar 

  13. Chuck AS, Clarke MF, Palsson BO (1996) Retroviral infection is limited by Brownian motion. Hum Gene Ther 7(13):1527–1534

    Article  CAS  Google Scholar 

  14. Andreadis S et al (2000) Toward a more accurate quantitation of the activity of recombinant retroviruses: alternatives to titer and multiplicity of infection. J Virol 74(3):1258–1266

    Article  CAS  Google Scholar 

  15. Tran R et al (2017) Microfluidic transduction harnesses mass transport principles to enhance gene transfer efficiency. Mol Ther 25(10):2372–2382

    Article  CAS  Google Scholar 

  16. McDonald JC, Whitesides GM et al (2002) Acc Chem Res 35(7):491–499

    Article  CAS  Google Scholar 

  17. Myers DR et al (2012) Endothelialized microfluidics for studying microvascular interactions in hematologic diseases. J Vis Exp (64). https://doi.org/10.3791/3958

  18. Kim L et al (2007) A practical guide to microfluidic perfusion culture of adherent mammalian cells. Lab Chip 7(6):681–694

    Article  CAS  Google Scholar 

  19. Barbulovic-Nad I, Au SH, Wheeler AR (2010) A microfluidic platform for complete mammalian cell culture. Lab Chip 10(12):1536–1542

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH (R01-HL129141 to W.A.L.) and a research partnership between Children’s Healthcare of Atlanta and the Georgia Institute of Technology. This work was performed in part at the Georgia Tech Institute for Electronics and Nanotechnology, a member of the National Nanotechnology Coordinated Infrastructure, which is supported by the National Science Foundation (grant ECCS-1542174).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilbur A. Lam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tran, R., Lam, W.A. (2020). Microfluidic Approach for Highly Efficient Viral Transduction. In: Katz, S., Rabinovich, P. (eds) Cell Reprogramming for Immunotherapy. Methods in Molecular Biology, vol 2097. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0203-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0203-4_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0202-7

  • Online ISBN: 978-1-0716-0203-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics