Skip to main content

Metabolomic Profiling of Adherent Mammalian Cells In Situ by LAESI-MS with Ion Mobility Separation

  • Protocol
  • First Online:
Ion Mobility-Mass Spectrometry

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2084))

Abstract

Ambient ionization-based mass spectrometry (MS) methods coupled with ion mobility separation (IMS) have emerged as promising approaches for high-throughput in situ analysis for biomedical to environmental applications. These methods are capable of direct profiling and molecular imaging of metabolites, lipids, peptides, and xenobiotics from biological tissues with minimal sample preparation. Furthermore, employing IMS within the workflow improves the molecular coverage, resolves isobaric species, and improves biomolecule identifications through accurate collision cross section measurements. Laser ablation electrospray ionization (LAESI)-MS coupled with IMS has been successful in profiling and molecular imaging of small biomolecules directly from biological tissues and single cells. Herein, we describe a protocol for the direct analysis of adherent mammalian cells with limited perturbations by LAESI-IMS-MS. A benefit of IMS is that within the same LAESI acquisition, the spectral features related to the ESI background, washing buffer, and cell signal can be extracted and isolated separately.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dunn WB, Bailey NJC, Johnson HE (2005) Measuring the metabolome: current analytical technologies. Analyst 130(5):606–625. https://doi.org/10.1039/b418288j

    Article  CAS  PubMed  Google Scholar 

  2. Park JO, Rubin SA, Xu YF, Amador-Noguez D, Fan J, Shlomi T, Rabinowitz JD (2016) Metabolite concentrations, fluxes and free energies imply efficient enzyme usage. Nat Chem Biol 12(7):482–489. https://doi.org/10.1038/nchembio.2077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cooks RG, Ouyang Z, Takats Z, Wiseman JM (2006) Ambient mass spectrometry. Science 311(5767):1566–1570. https://doi.org/10.1126/science.1119426

    Article  CAS  PubMed  Google Scholar 

  4. Wu CP, Dill AL, Eberlin LS, Cooks RG, Ifa DR (2013) Mass spectrometry imaging under ambient conditions. Mass Spectrom Rev 32(3):218–243. https://doi.org/10.1002/mas.21360

    Article  CAS  PubMed  Google Scholar 

  5. Chiang S, Zhang WP, Ouyang Z (2018) Paper spray ionization mass spectrometry: recent advances and clinical applications. Expert Rev Proteomics 15(10):781–789. https://doi.org/10.1080/14789450.2018.1525295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pavlovich MJ, Musselman B, Hall AB (2018) Direct analysis in real time mass sepctrometry (DART-MS) in forensic and security applications. Mass Spectrom Rev 37(2):171–187. https://doi.org/10.1002/mas.21509

    Article  CAS  PubMed  Google Scholar 

  7. Alford A (1975) Environmental applications of mass spectrometry. Biomed Mass Spectrom 2(5):229–253. https://doi.org/10.1002/bms.1200020502

    Article  CAS  Google Scholar 

  8. Ifa DR, Eberlin LS (2016) Ambient ionization mass spectrometry for cancer diagnosis and surgical margin evaluation. Clin Chem 62(1):111–123. https://doi.org/10.1373/clinchem.2014.237172

    Article  CAS  PubMed  Google Scholar 

  9. Li H, Balan P, Vertes A (2016) Molecular imaging of growth, metabolism, and antibiotic inhibition in bacterial colonies by laser ablation electrospray ionization mass spectrometry. Angew Chem Int Ed 55(48):15035–15039. https://doi.org/10.1002/anie.201607751

    Article  CAS  Google Scholar 

  10. Muller T, Oradu S, Ifa DR, Cooks RG, Krautler B (2011) Direct plant tissue analysis and imprint imaging by desorption electrospray ionization mass spectrometry. Anal Chem 83(14):5754–5761. https://doi.org/10.1021/ac201123t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gross JH (2014) Direct analysis in real time-a critical review on DART-MS. Anal Bioanal Chem 406(1):63–80. https://doi.org/10.1007/s00216-013-7316-0

    Article  CAS  PubMed  Google Scholar 

  12. Nemes P, Vertes A (2007) Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal Chem 79(21):8098–8106. https://doi.org/10.1021/ac071181r

    Article  CAS  PubMed  Google Scholar 

  13. Shrestha B, Vertes A (2014) High-throughput cell and tissue analysis with enhanced molecular coverage by laser ablation electrospray ionization mass spectrometry using ion mobility separation. Anal Chem 86(9):4308–4315. https://doi.org/10.1021/ac500007t

    Article  CAS  PubMed  Google Scholar 

  14. Gaye MM, Kurulugama R, Clemmer DE (2015) Investigating carbohydrate isomers by IMS-CID-IMS-MS: precursor and fragment ion cross-sections. Analyst 14(20):6922–6932. https://doi.org/10.1039/c5an00840a

    Article  Google Scholar 

  15. Paglia G, Kliman M, Claude E, Geromanos S, Astarita G (2015) Applications of ion-mobility mass spectrometry for lipid analysis. Anal Bioanal Chem 407(17):4995–5007. https://doi.org/10.1007/s00216-015-8664-8

    Article  CAS  PubMed  Google Scholar 

  16. Chouinard CD, Wei MS, Beekman CR, Kemperman RHJ, Yost RA (2016) Ion mobility in clinical analysis: current progress and future perspectives. Clin Chem 62(1):124–133. https://doi.org/10.1373/clinchem.2015.238840

    Article  CAS  PubMed  Google Scholar 

  17. Kliman M, May JC, McLean JA (2011) Lipid analysis and lipidomics by structurally selective ion mobility-mass spectrometry. Biochim Biophys Acta 1811(11):935–945. https://doi.org/10.1016/j.bbalip.2011.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kanu AB, Dwivedi P, Tam M, Matz L, Hill HH (2008) Ion mobility-mass spectrometry. J Mass Spectrom 43(1):1–22. https://doi.org/10.1002/jms.1383

    Article  CAS  PubMed  Google Scholar 

  19. Stopka SA, Mansour TR, Shrestha B, Marechal E, Falconet D, Vertes A (2016) Turnover rates in microorganisms by laser ablation electrospray ionization mass spectrometry and pulse-chase analysis. Anal Chim Acta 902:1–7. https://doi.org/10.1016/j.aca.2015.08.047

    Article  CAS  PubMed  Google Scholar 

  20. Stopka S, Agtuca B, Khattar R, Anderton C, Koppenaal D, Pasa-Tolic L, Stacey G, Vertes A (2017) Metabolomics of biological nitrogen fixation explored by laser ablation electrospray ionization mass spectrometry combined with fluorescence microscopy. Abstracts of Papers of the American Chemical Society 254

    Google Scholar 

  21. De Clercq E (2005) Recent highlights in the development of new antiviral drugs. Curr Opin Microbiol 8(5):552–560. https://doi.org/10.1016/j.mib.2005.08.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Otterbein LE, Bach FH, Alam J, Soares M, Lu HT, Wysk M, Davis RJ, Flavell RA, Choi AMK (2000) Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med 6(4):422–428

    Article  CAS  PubMed  Google Scholar 

  23. Jacobson RS, Thurston RL, Shrestha B, Vertes A (2015) In situ analysis of small populations of adherent mammalian cells using laser ablation electrospray ionization mass spectrometry in transmission geometry. Anal Chem 87(24):12130–12136. https://doi.org/10.1021/acs.analchem.5b02971

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Lida Parvin for providing a cell stock of SK-N-AS. Research was sponsored by the U.S. Army Research Office and the Defense Advanced Research Projects Agency and was accomplished under Cooperative Agreement Number W911NF-14-2-0020. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Office, DARPA, or the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylwia A. Stopka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Stopka, S.A., Vertes, A. (2020). Metabolomic Profiling of Adherent Mammalian Cells In Situ by LAESI-MS with Ion Mobility Separation. In: Paglia, G., Astarita, G. (eds) Ion Mobility-Mass Spectrometry . Methods in Molecular Biology, vol 2084. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0030-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0030-6_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0029-0

  • Online ISBN: 978-1-0716-0030-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics