Skip to main content

Potential Storage Materials

  • Chapter
  • First Online:
Hydrogen Storage Materials

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

This chapter presents an overview of the various materials that are currently being considered as potential solid state storage media. We concentrate on the physical and chemical properties of the materials relevant for the characterisation of their hydrogen storage properties and their practical use in storage devices, as opposed to the materials synthesis methods. The chapter looks first at microporous materials, including activated and nanostructured carbons, zeolites, organic microporous polymers and metal-organic frameworks. Secondly, we cover the alloys and intermetallic compounds that form interstitial hydrides at practical storage temperatures and hydrogen pressures. The complex hydrides, including alanates and lithium-based materials, such as LiNH2 and LiBH4, are then discussed before concluding with a look at some materials that do not fit readily into the above categories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Hydrogen adsorption by porous materials has, however, been studied since the early twentieth century [3, 4].

  2. 2.

    The definition of the geometric volume is the volume occupied by the sample including both closed and open pores (see the definition of geometric density in Sect. 6.2.1).

  3. 3.

    176 different structure types are listed by Baelocher et al. [30].

  4. 4.

    Van den Berg et al. [36] and Vitillo et al. [32] both calculated the maximum hydrogen uptake using molecular mechanics simulations but used different convergence criteria to define when the hydrogen capacity had reached saturation. In addition, the latter study included a correction for the zero point motion of hydrogen, whereas the former did not.

  5. 5.

    Hydrogen encapsulation has been investigated by a number of authors [3941] by loading zeolites at elevated temperatures under a hydrogen atmosphere, then cooling the sample to ambient and performing TPD up to temperatures of 673 K to desorb the encapsulated hydrogen. However, storage capacities were found to be low; for example, 0.6 wt% for Na-X at hydrogenation pressures of 13.3 kpsi (91.7 MPa) [39].

  6. 6.

    Metal-organic frameworks tend to be known by the initials assigned to them by the researchers responsible for the original synthesis. These initials do not follow any particular pattern but tend to refer to either the material type or the researchers’ institution. Examples include MOF (Metal-Organic Framework), MIL (Materials of Institute Lavoisier), IRMOF (IsoReticular Metal-Organic Framework) and UMCM (University of Michigan Crystalline Material).

  7. 7.

    Note that the majority of the data reports the hydrogen uptake at atmospheric pressure, which gives limited information with regard to the reversible capacity for storage purposes (Sect. 3.1.1), and therefore further studies at elevated pressures are required.

  8. 8.

    M′MOF 1 is Zn3(bdc)3[Cu(pyen)], where pyenH2 = 5-methyl-4-oxo-1,4-dihydro-pyridine-3-carbaldehyde.

  9. 9.

    The calculated values were obtained using the semi-empirical band structure model of Griessen and Driessen [94]. The discrepancy between these values and experiment most likely originates from the implicit assumption in this model that each hydrogen atom sits in the same environment, surrounded by an average number of A and B atoms, rather than on crystallographically distinct interstitial sites.

  10. 10.

    http://hydpark.ca.sandia.gov/DBFrame.html, accessed 2nd January 2010.

  11. 11.

    Results had been presented at symposia 4 to 5 years prior to the report published in 1974 [105].

  12. 12.

    AlH3 is an example of a kinetically stabilised hydrogen storage material [114, 116], which are hydrides that have high equilibrium hydrogen pressures at ambient temperature but do not desorb appreciable amounts of hydrogen at this temperature due to kinetic limitations.

  13. 13.

    A theoretical capacity of 11.5 wt% is occasionally quoted but this value, depending on the definition of hydrogen capacity, is an error from the original Chen et al. [165] paper that has since appeared in other reports [179].

  14. 14.

    Ultralow density, emulsion-templated polymerized High Internal Phase Emulsion (polyHIPE) material.

  15. 15.

    Lightly crosslinked poly(acrylic acid) sodium salt (PSA).

  16. 16.

    1-alkyl(aryl)-3-methylimidazolium N-bis(trifluoromethanesulfonyl) salt.

References

  1. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57(4):603–619

    Google Scholar 

  2. Menon VC, Komarneni S (1998) Porous adsorbents for vehicular natural gas storage: a review. J Porous Mater 5:43–58

    Google Scholar 

  3. McBain JW (1909) The mechanism of the adsorption (“sorption”) of hydrogen by carbon. Philos Mag Ser 6 18(108):916–935

    Google Scholar 

  4. Frolich PK, White A (1930) Adsorption of methane and hydrogen on charcoal at high pressure. Ind Eng Chem 22(10):1058–1060

    Google Scholar 

  5. Carpetis C, Peschka W (1980) A study on hydrogen storage by use of cryoadsorbents. Int J Hydrogen Energy 5:539–554

    Google Scholar 

  6. Agarwal RK, Noh JS, Schwarz JA, Davini P (1987) Effect of surface acidity of activated carbon on hydrogen storage. Carbon 25(2):219–226

    Google Scholar 

  7. Chahine R, Bose TK (1994) Low-pressure adsorption storage of hydrogen. Int J Hydrogen Energy 19(2):161–164

    Google Scholar 

  8. Férey G (2008) Hybrid porous solids: past, present, future. Chem Soc Rev 37:191–214

    Google Scholar 

  9. Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powders and porous solids: principles, methodology and applications. Academic Press, London

    Google Scholar 

  10. Menon PG (1968) Adsorption at high pressures. Chem Rev 68(3):277–294

    Google Scholar 

  11. Broom DP, Walton A, Book D, Benham MJ (2007) The accurate determination of the temperature dependence of hydrogen uptake by Na-X zeolite. Presented at the 15th International Zeolite Conference, Beijing, China, 12–17 August 2007

    Google Scholar 

  12. Thomas KM (2009) Adsorption and desorption of hydrogen on metal-organic framework materials for storage applications: comparison with other nanoporous materials. Dalton Trans 1487–1505

    Google Scholar 

  13. Yürüm Y, Taralp A, Veziroglu TN (2009) Storage of hydrogen in nanostructured carbon materials. Int J Hydrogen Energy 34:3784–3798

    Google Scholar 

  14. Rzepka M, Lamp P, de la Casa-Lillo MA (1998) Physisorption of hydrogen on microporous carbon and carbon nanotubes. J Phys Chem B 102:10894–10898

    Google Scholar 

  15. Jordá-Beneyto M, Suárez-García F, Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A (2007) Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures. Carbon 45:293–303

    Google Scholar 

  16. Zlotea C, Moretto P, Steriotis T (2009) A Round Robin characterisation of the hydrogen sorption properties of a carbon based material. Int J Hydrogen Energy 34(7):3044–3057

    Google Scholar 

  17. Jordá-Beneyto M, Lozano-Castelló D, Suárez-García F, Cazorla-Amorós D, Linares-Solano Á (2008) Advanced activated carbon monoliths and activated carbons for hydrogen storage. Microporous Mesoporous Mater 112:235–242

    Google Scholar 

  18. Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386:377–379

    Google Scholar 

  19. Züttel A, Orimo S (2002) Hydrogen in nanostructured, carbon-related, and metallic materials. MRS Bull 27(9):705–711

    Google Scholar 

  20. Hirscher M, Becher M, Haluska M, Dettlaff-Weglikowska U, Quintel A, Duesberg GS, Choi Y-M, Downes P, Hulman M, Roth S, Stepanek I, Bernier P (2001) Hydrogen storage in sonicated carbon materials. Appl Phys A 72:129–132

    Google Scholar 

  21. Chambers A, Park C, Baker RTK, Rodriguez NM (1998) Hydrogen storage in graphite nanofibers. J Phys Chem B 102(22):4253–4256

    Google Scholar 

  22. Lamari Darkrim F, Malbrunot P, Tartaglia GP (2002) Review of hydrogen storage by adsorption in carbon nanotubes. Int J Hydrogen Energy 27:193–202

    Google Scholar 

  23. Blackman JM, Patrick JW, Snape CE (2006) An accurate volumetric differential pressure method for the determination of hydrogen storage capacity at high pressures in carbon materials. Carbon 44:918–927

    Google Scholar 

  24. Pubysheva OV, Farajian AA, Yakobson BI (2008) Fullerene nanocage capacity for hydrogen storage. Nano Lett 8(3):767–774

    Google Scholar 

  25. Xu W-C, Takahashi K, Matsuo Y, Hattori Y, Kumagai M, Ishiyama S, Kaneko K, Iijima S (2007) Investigation of hydrogen storage capacity of various carbon materials. Int J Hydrogen Energy 32:2504–2512

    Google Scholar 

  26. Yang Z, Xia Y, Mokaya R (2007) Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials. J Am Chem Soc 129:1673–1679

    Google Scholar 

  27. Hu Q, Lu Y, Meisner GP (2008) Preparation of nanoporous carbon particles and their cryogenic hydrogen storage capacities. J Phys Chem C 112:1516–1523

    Google Scholar 

  28. Gogotsi Y, Dash RK, Yushin G, Yildirim T, Laudisio G, Fischer JE (2005) Tailoring of nanoscale porosity in carbide-derived carbons for hydrogen storage. J Am Chem Soc 127:16006–16007

    Google Scholar 

  29. Gogotsi Y, Portet C, Osswald S, Simmons JM, Yildirim T, Laudisio G, Fischer JE (2009) Importance of pore size in high-pressure hydrogen storage by porous carbons. Int J Hydrogen Energy 34:6314–6319

    Google Scholar 

  30. Baerlocher Ch, Yoshikawa T, McCusker LB, Olson DH (2007) Atlas of zeolite framework types, 6th edn. Elsevier, Amsterdam

    Google Scholar 

  31. Nijkamp MG, Raaymakers JEMJ, van Dillen AJ, de Jong KP (2001) Hydrogen storage using physisorption - materials demands. Appl Phys A 72:619–623

    Google Scholar 

  32. Vitillo JG, Ricchiardi G, Spoto G, Zecchina A (2005) Theoretical maximal storage of hydrogen in zeolitic frameworks. Phys Chem Chem Phys 7:3948–3954

    Google Scholar 

  33. Langmi HW, Walton A, Al-Mamouri MM, Johnson SR, Book D, Speight JD, Edwards PP, Gameson I, Anderson PA, Harris IR (2003) Hydrogen adsorption in zeolites A, X, Y and RHO. J Alloy Compd 356–357:710–715

    Google Scholar 

  34. Anderson PA (2008) Storage of hydrogen in zeolites. In: Walker G (ed) Solid-state hydrogen storage: materials and chemistry. Woodhead Publishing, Cambridge

    Google Scholar 

  35. Du X, Wu E (2006) Physisorption of hydrogen in A, X and ZSM-5 types of zeolites at moderately high pressures. Chin J Chem Phys 19(5):457–462

    MathSciNet  Google Scholar 

  36. van den Berg AWC, Bromley ST, Jansen JC (2005) Thermodynamic limits on hydrogen storage in sodalite framework materials: a molecular mechanics investigation. Microporous Mesoporous Mater 78:63–71

    Google Scholar 

  37. van den Berg AWC, Bromley ST, Wojdel JC, Jansen JC (2006) Adsorption isotherms of H2 in microporous materials with SOD structure: a grand canonical Monte Carlo study. Microporous Mesoporous Mater 87:235–242

    Google Scholar 

  38. Song MK, No KT (2007) Molecular simulation of hydrogen adsorption in organic zeolite. Catal Today 120:374–382

    Google Scholar 

  39. Fraenkel D, Shabtai J (1977) Encapsulation of hydrogen in molecular sieve zeolites. J Am Chem Soc 99:7074–7076

    Google Scholar 

  40. Efstathiou AM, Suib SL, Bennett CO (1990) Encapsulation of molecular hydrogen in zeolites at 1 atm. J Catal 123:456–462

    Google Scholar 

  41. Weitkamp J, Fritz M, Ernst S (1995) Zeolites as media for hydrogen storage. Int J Hydrogen Energy 20(12):967–970

    Google Scholar 

  42. Garrone E, Bonelli B, Otero Areán C (2008) Enthalpy-entropy correlation for hydrogen adsorption on zeolites. Chem Phys Lett 456:68–70

    Google Scholar 

  43. Otero Areán C, Turnes Palomino G, Llop Carayol MR (2007) Variable temperature FT-IR studies on hydrogen adsorption on the zeolite (Mg, Na)-Y. Appl Surf Sci 253:5701–5704

    Google Scholar 

  44. Felderhoff M, Weidenthaler C, von Helmolt R, Eberle U (2007) Hydrogen storage: the remaining scientific and technological challenges. Phys Chem Chem Phys 9:2643–2653

    Google Scholar 

  45. van den Berg AWC, Otero Areán C (2008) Materials for hydrogen storage: current research trends and perspectives. Chem Commun 668-681

    Google Scholar 

  46. Rosseinsky MJ (2004) Recent developments in metal-organic framework chemistry: design, discovery, permanent porosity and flexibility. Microporous Mesoporous Mater 73:15–30

    Google Scholar 

  47. Rowsell JLC, Yaghi OM (2004) Metal-organic frameworks: a new class of porous materials. Microporous Mesoporous Mater 73:3–14

    Google Scholar 

  48. Rowsell JLC, Yaghi OM (2005) Strategies for hydrogen storage in metal-organic frameworks. Angew Chem Int Ed 44:4670–4679

    Google Scholar 

  49. Collins DJ, Zhou HC (2007) Hydrogen storage in metal-organic frameworks. J Mater Chem 17:3154–3160

    Google Scholar 

  50. Zhao D, Yuan D, Zhou H-C (2008) The current status of hydrogen storage in metal-organic frameworks. Energy Environ Sci 1:222–235

    Google Scholar 

  51. Dincă M, Long JR (2008) Hydrogen storage in microporous metal-organic frameworks with exposed metal sites. Angew Chem Int Ed 47(36):6766–6779

    Google Scholar 

  52. Murray LJ, Dincă M, Long JR (2009) Hydrogen storage in metal-organic frameworks. Chem Soc Rev 38:1294–1314

    Google Scholar 

  53. Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keefe M, Yaghi OM (2003) Hydrogen storage in microporous metal-organic frameworks. Science 300:1127–1129

    Google Scholar 

  54. Züttel A (2003) Materials for hydrogen storage. Mater Today 6(9):24–33

    Google Scholar 

  55. Rowsell JLC, Millward AR, Park KS, Yaghi OM (2004) Hydrogen sorption in functionalized metal-organic frameworks. J Am Chem Soc 126:5666–5667

    Google Scholar 

  56. Wong-Foy AG, Matzger AJ, Yaghi OM (2006) Exceptional H2 saturation uptake in microporous metal-organic frameworks. J Am Chem Soc 128:3494–3495

    Google Scholar 

  57. Dincă M, Dailly A, Liu Y, Brown CM, Neumann DA, Long JR (2006) Hydrogen storage in a microporous metal-organic framework with exposed Mn2+ coordination sites. J Am Chem Soc 128:16876–16883

    Google Scholar 

  58. Kubas GJ (2007) Fundamentals of H2 binding and reactivity on transition metals underlying hydrogenase function and H2 production and storage. Chem Rev 107:4152–4205

    Google Scholar 

  59. Hoang TKA, Antonelli DM (2009) Exploiting the Kubas interaction in the design of hydrogen storage materials. Adv Mater 21:1787–1800

    Google Scholar 

  60. Zhao X, Xiao B, Fletcher AJ, Thomas KM, Bradshaw D, Rosseinsky MJ (2004) Hysteretic adsorption and desorption of hydrogen by nanoporous metal-organic frameworks. Science 306:1012–1015

    Google Scholar 

  61. Fletcher AJ, Thomas KM, Rosseinsky MJ (2005) Flexibility in metal-organic framework materials: impact on sorption properties. J Solid State Chem 178(8):2491–2510

    Google Scholar 

  62. Panella B, Hirscher M, Pütter H, Müller U (2006) Hydrogen adsorption in metal-organic frameworks: Cu-MOFs and Zn-MOFs compared. Adv Funct Mater 16:520–524

    Google Scholar 

  63. Chen B, Zhao X, Putkham A, Hong K, Lobkovsky EB, Hurtado EJ, Fletcher AJ, Thomas KM (2008) Surface interactions and quantum kinetic molecular sieving for H2 and D2 adsorption on a mixed metal-organic framework material. J Am Chem Soc 130:6411–6423

    Google Scholar 

  64. Makowski P, Thomas A, Kuhn P, Goettmann F (2009) Organic materials for hydrogen storage applications: from physisorption on organic solids to chemisorption in organic molecules. Energy Environ Sci 2:480–490

    Google Scholar 

  65. McKeown NB, Budd PM (2006) Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem Soc Rev 35:675–683

    Google Scholar 

  66. Budd PM, Butler A, Selbie J, Mahmood K, McKeown NB, Ghanem B, Msayib K, Book D, Walton A (2007) The potential of organic polymer-based hydrogen storage materials. Phys Chem Chem Phys 9:1802–1808

    Google Scholar 

  67. Tsyurupa MP, Davankov VA (2006) Porous structure of hypercrosslinked polystyrene: state-of-the-art mini-review. React Funct Polym 66(7):768–779

    Google Scholar 

  68. Wood CD, Tan B, Trewin A, Niu H, Bradshaw D, Rosseinsky MJ, Khimyak YZ, Campbell NL, Kirk R, Stöckel E, Cooper AI (2007) Hydrogen storage in microporous hypercrosslinked organic polymer networks. Chem Mater 19:2034–2048

    Google Scholar 

  69. Han SS, Furukawa H, Yaghi OM, Goddard WA (2008) Covalent organic frameworks as exceptional hydrogen storage materials. J Am Chem Soc 130:11580–11581

    Google Scholar 

  70. Furukawa H, Yaghi OM (2009) Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J Am Chem Soc 131:8875–8883

    Google Scholar 

  71. El-Kaderi HM, Hunt JR, Mendoza-Cortés JL, Côté AP, Taylor RE, O’Keefe M, Yaghi OM (2007) Designed synthesis of 3D covalent organic frameworks. Science 316:268–272

    Google Scholar 

  72. Spoto G, Vitillo JG, Cocina D, Damin A, Bonino F, Zecchina A (2007) FTIR spectroscopy and thermodynamics of hydrogen adsorbed in a cross-linked polymer. Phys Chem Chem Phys 9:4992–4999

    Google Scholar 

  73. Comotti A, Bracco S, Distefano G, Sozzani P (2009) Methane, carbon dioxide and hydrogen storage in nanoporous dipeptide-based materials. Chem Commun 284-286

    Google Scholar 

  74. Msayib KJ, Book D, Budd PM, Chaukura N, Harris KDM, Helliwell M, Tedds S, Walton A, Warren JE, Xu M, McKeown NB (2009) Nitrogen and hydrogen adsorption by an organic microporous crystal. Angew Chem Int Ed 48:3273–3277

    Google Scholar 

  75. Panella B, Kossykh L, Dettlaff-Weglikowska U, Hirscher M, Zerbi G, Roth S (2005) Volumetric measurement of hydrogen storage in HCL-treated polyaniline and polypyrrole. Synth Met 151:208–210

    Google Scholar 

  76. Rose M, Böhlmann W, Sabo M, Kaskel S (2008) Element-organic frameworks with high permanent porosity. Chem Commun 2462-2464

    Google Scholar 

  77. Graham T (1866) On the absorption and dialytic separation of gases by colloid septa. Philos Trans R Soc Lond 156:399–439

    Google Scholar 

  78. Sandrock G, Suda S, Schlapbach L (1992) Applications. In: Schlapbach L (ed) Topics in applied physics vol. 67: hydrogen in intermetallic compounds II. Surface and dynamic properties, applications. Springer-Verlag, Berlin

    Google Scholar 

  79. Bowman RC Jr, Fultz B (2002) Metallic hydrides I: hydrogen storage and other gas-phase applications. MRS Bull 27(9):688–693

    Google Scholar 

  80. Sandrock G, Bowman RC Jr (2003) Gas-based hydride applications: recent progress and future needs. J Alloy Compd 356, 357:794–799

    Google Scholar 

  81. Fukai Y (2005) The metal-hydrogen system. Basic bulk properties, 2nd edn. Springer, Berlin

    Google Scholar 

  82. Alefeld G, Völkl J (eds) (1978) Topics in applied physics vol. 28: hydrogen in metals I. Basic properties. Springer-Verlag, Berlin

    Google Scholar 

  83. Alefeld G, Völkl J (eds) (1978) Topics in applied physics vol. 29: hydrogen in metals II. Application-oriented properties. Springer-Verlag, Berlin

    Google Scholar 

  84. Schlapbach L (ed) (1988) Topics in applied physics Vol. 63: hydrogen in intermetallic compounds I. Electronic, thermodynamic and crystallographic properties, preparation. Springer-Verlag, Berlin

    Google Scholar 

  85. Schlapbach L (ed) (1992) Topics in applied physics vol. 67: hydrogen in intermetallic compounds II. Surface and dynamic properties, applications. Springer-Verlag, Berlin

    Google Scholar 

  86. Wipf H (ed) (1997) Topics in applied physics vol. 73: hydrogen in metals III. Properties and applications. Springer-Verlag, Berlin

    Google Scholar 

  87. Sandrock G (1999) A panoramic overview of hydrogen storage alloys from a gas reaction point of view. J Alloy Compd 293–295:877–888

    Google Scholar 

  88. Libowitz GG, Hayes HF, Gibb TRP Jr (1958) The system zirconium-nickel and hydrogen. J Phys Chem 62(1):76–79

    Google Scholar 

  89. Reilly JJ, Wiswall RH (1967) The reaction of hydrogen with alloys of magnesium and copper. Inorg Chem 6(12):2220–2223

    Google Scholar 

  90. Reilly JJ, Wiswall RH (1968) The reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4. Inorg Chem 7(11):2254–2256

    Google Scholar 

  91. van Vucht JHN, Kuijpers FA, Bruning HCAM (1970) Reversible room-temperature absorption of large quantities of hydrogen by intermetallic compounds. Philips Res Rep 25(2):133–140

    Google Scholar 

  92. Griessen R, Riesterer T (1988) Heat of formation models. In: Schlapbach L (ed) Topics in applied physics vol. 67: hydrogen in intermetallic compounds I. Surface and dynamic properties, applications. Springer-Verlag, Berlin

    Google Scholar 

  93. Buschow KHJ, Bouten PCP, Miedema AR (1982) Hydrides formed from intermetallic compounds of two transition metals: a special class of ternary alloys. Rep Prog Phys 45:937–1039

    Google Scholar 

  94. Griessen R, Driessen A (1984) Heat of formation and band structure of binary and ternary metal hydrides. Phys Rev B 30(8):4372–4381

    Google Scholar 

  95. Yvon K (2003) Hydrogen in novel solid-state metal hydrides. Z Kristallogr 218:108–116

    Google Scholar 

  96. Luo S, Clewley JD, Flanagan TB, Bowman RC Jr, Wade LA (1998) Further studies of the isotherms of LaNi5−xSnx-H for x = 0–0.5. J Alloy Compd 267:171–181

    Google Scholar 

  97. Bowman RC Jr, Luo CH, Ahn CC, Witham CK, Fultz B (1995) The effect of tin on the degradation of LaNi5-ySny metal hydrides during thermal cycling. J Alloy Compd 217:185–192

    Google Scholar 

  98. Chandra D, Reilly JJ, Chellappa R (2006) Metal hydrides for vehicular applications: the state of the art. JOM 58(2):26–32

    Google Scholar 

  99. Ivey DG, Northwood DO (2003) Storing energy in metal hydrides: a review of the physical metallurgy. J Mater Sci 18:321–347

    Google Scholar 

  100. Sandrock G, Thomas G (2001) The IEA/DOE/SNL on-line hydride databases. Appl Phys A 72:153–155

    Google Scholar 

  101. Feng F, Geng M, Northwood DO (2001) Electrochemical behaviour of intermetallic-based metal hydrides used in Ni/metal hydride (MH) batteries: a review. Int J Hydrogen Energy 26:725–734

    Google Scholar 

  102. Young K, Fetcenko MA, Li F, Ouchi T (2008) Structural, thermodynamic, and electrochemical properties of Ti x Zr1-x (VNiCrMnCoAl)2 C14 Laves phase alloys. J Alloy Compd 464:238–247

    Google Scholar 

  103. Luo W, Clewley JD, Flanagan TB, Oates WA (1992) Thermodynamic characterization of the Zr-Mn-H system Part 1. Reaction of H2 with single-phase ZrMn2+x C-14 Laves phase alloys. J Alloy Compd 185:321–338

    Google Scholar 

  104. Töpler J, Feucht K (1989) Results of a test fleet with metal hydride motor cars. Z Phys Chem NF 164:1451–1461

    Google Scholar 

  105. Reilly JJ, Wiswall RH (1974) Formation and properties of iron titanium hydride. Inorg Chem 13(1):218–222

    Google Scholar 

  106. Sakintuna B, Lamari-Darkrim F, Hirscher M (2007) Metal hydride materials for solid hydrogen storage: a review. Int J Hydrogen Energy 32:1121–1140

    Google Scholar 

  107. Nomura K, Akiba E (1995) H2 Absorbing-desorbing characterization of the Ti-V-Fe alloy system. J Alloy Compd 231:513–517

    Google Scholar 

  108. Cho S-W, Shim G, Choi G-S, Park C-N, Yoo J-H, Choi J (2007) Hydrogen absorption-desorption properties of Ti0.32Cr0.43V0.25 alloy. J Alloy Compd 430:136–141

    Google Scholar 

  109. Seo C-Y, Kim J-H, Lee PS, Lee J-Y (2003) Hydrogen storage properties of vanadium-based b.c.c solid solution metal hydrides. J Alloy Compd 348:252–257

    Google Scholar 

  110. Song XP, Pei P, Zhang PL, Chen GL (2008) The influence of alloy elements on the hydrogen storage properties in vanadium-based solid solution alloys. J Alloy Compd 455:392–397

    Google Scholar 

  111. Mazzolai G, Coluzzi B, Biscarini A, Mazzolai FM, Tuissi A, Agresti F, Lo Russo S, Maddalena A, Palade P, Principi G (2008) Hydrogen-storage capacities and H diffusion in bcc TiVCr alloys. J Alloy Compd 466:133–139

    Google Scholar 

  112. Wang J-Y (2009) Comparison of hydrogen storage properties of Ti0.37V0.38Mn0.25 alloys prepared by mechanical alloying and vacuum arc melting. Int J Hydrogen Energy 34:3771–3777

    Google Scholar 

  113. Akiba E, Okada M (2002) Metallic hydrides III: body-centered-cubic solid-solution alloys. MRS Bull 27(9):699–703

    Google Scholar 

  114. Graetz J, Reilly JJ (2007) Kinetically stabilized hydrogen storage materials. Scr Mater 56:835–839

    Google Scholar 

  115. Hauback BC (2008) Structures of aluminium-based light weight hydrides. Z Kristallogr 223:636–648

    Google Scholar 

  116. Graetz J (2009) New approaches to hydrogen storage. Chem Soc Rev 38:73–82

    Google Scholar 

  117. Kuji T, Matsumura Y, Uchida H, Aizawa T (2002) Hydrogen absorption of nanocrystalline palladium. J Alloy Compd 330–332:718–722

    Google Scholar 

  118. Suleiman M, Jisrawi NM, Dankert O, Reetz MT, Bähtz C, Kirchheim R, Pundt A (2003) Phase transition and lattice expansion during hydrogen loading of nanometer sized palladium clusters. J Alloy Compd 356–357:644–648

    Google Scholar 

  119. Pundt A (2004) Hydrogen in nano-sized metals. Adv Eng Mater 6(1–2):11–21

    Google Scholar 

  120. Pundt A, Kirchheim R (2006) Hydrogen in metals: microstructural aspects. Annu Rev Mater Res 36:555–608

    Google Scholar 

  121. Yamauchi M, Kobayashi H, Kitagawa H (2009) Hydrogen storage mediated by Pd and Pt nanoparticles. ChemPhysChem 10:2566–2576

    Google Scholar 

  122. Stampfer JF Jr, Holley CE Jr, Suttle JF (1960) The magnesium-hydrogen system. J Am Chem Soc 82(14):3504–3508

    Google Scholar 

  123. Huot J, Liang G, Schulz R (2001) Mechanically alloyed metal hydride systems. Appl Phys A 72:187–195

    Google Scholar 

  124. Corey RL, Ivancic TM, Shane DT, Carl EA, Bowman RC Jr, Bellosta von Colbe JM, Dornheim M, Bormann R, Huot J, Zidan R, Stowe AC, Conradi MS (2008) Hydrogen motion in magnesium hydride by NMR. J Phys Chem C 112:19784–19790

    Google Scholar 

  125. Zaluska A, Zaluski L, Ström-Olsen JO (2001) Structure, catalysis, and atomic reactions on the nano-scale: a systematic approach to metal hydrides for hydrogen storage. Appl Phys A 72:157–165

    Google Scholar 

  126. Gross AF, Ahn CC, Van Atta SL, Liu P, Vajo JJ (2009) Fabrication and hydrogen sorption behaviour of nanoparticulate MgH2 incorporated in a porous carbon host. Nanotechnology 20:204005

    Google Scholar 

  127. Aguey-Zinsou K-F, Ares-Fernández J-R (2008) Synthesis of colloidal magnesium: a near room temperature store for hydrogen. Chem Mater 20:376–378

    Google Scholar 

  128. Barkhordarian G, Klassen T, Bormann R (2006) Catalytic mechanism of transition-metal compounds on Mg hydrogen sorption reaction. J Phys Chem 110:11020–11024

    Google Scholar 

  129. Aguey-Zinsou K-F, Ares Fernandez JR, Klassen T, Bormann R (2007) Effect of Nb2O5 on MgH2 properties during mechanical milling. Int J Hydrogen Energy 32:2400–2407

    Google Scholar 

  130. Wagemans RWP, van Lenthe JH, de Jongh PE, van Dillen AJ, de Jong KP (2005) Hydrogen storage in magnesium clusters: quantum chemical study. J Am Chem Soc 127:16675–16680

    Google Scholar 

  131. Grant D (2008) Magnesium hydride for hydrogen storage. In: Walker G (ed) Solid-state hydrogen storage: materials and chemistry. Woodhead Publishing, Cambridge

    Google Scholar 

  132. Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1–184

    Google Scholar 

  133. Suryanarayana C, Koch CC (2000) Nanocrystalline materials—current research and future directions. Hyperfine Interact 130:5–44

    Google Scholar 

  134. Suryanarayana C (2002) The structure and properties of nanocrystalline materials: issues and concerns. JOM 54(9):24–27

    Google Scholar 

  135. Bérubé V, Radtke G, Dresselhaus M, Chen G (2007) Size effects on the hydrogen storage properties of nanostructured metal hydrides: a review. Int J Energy Res 31:637–663

    Google Scholar 

  136. Maeland AJ, Tanner LE, Libowitz GG (1980) Hydrides of metallic glass alloys. J Less-Common Met 74:279–285

    Google Scholar 

  137. Orimo S, Fujii H (1998) Effects of nanometer-scale structure on hydriding properties of Mg-Ni alloys: a review. Intermetallics 6:185–192

    Google Scholar 

  138. Zaluski L, Zaluska A, Tessier P, Ström-Olsen JO, Schulz R (1995) Effects of relaxation on hydrogen absorption in Fe-Ti produced by ball-milling. J Alloy Compd 227:53–57

    Google Scholar 

  139. Bououdina M, Fruchart D, Jacquet S, Pontonnier L, Soubeyroux JL (1999) Effect of nickel alloying by using ball milling on the absorption properties of TiFe. Int J Hydrogen Energy 24:885–890

    Google Scholar 

  140. Harris JH, Curtin WA, Schultz L (1988) Hydrogen storage characteristics of mechanically alloyed amorphous metals. J Mater Res 3(5):872–883

    Google Scholar 

  141. Liang G, Huot J, Schulz R (2001) Hydrogen storage properties of the mechanically alloyed LaNi5-based materials. J Alloy Compd 320:133–139

    Google Scholar 

  142. Hotta H, Abe M, Kuji T, Uchida H (2007) Synthesis of Ti-Fe alloys by mechanical alloying. J Alloy Compd 439:221–226

    Google Scholar 

  143. Abe M, Kuji T (2007) Hydrogen absorption of TiFe alloy synthesized by ball milling and post-annealing. J Alloy Compd 446–447:200–203

    Google Scholar 

  144. Huot J, Enoki H, Akiba E (2008) Synthesis, phase transformation, and hydrogen storage properties of ball-milled TiV0.9Mn1.1. J Alloy Compd 453:203–209

    Google Scholar 

  145. Parente A, Nale A, Catti M, Kopnin E, Caracino P (2008) Hydrogenation properties of Mg2AlNi2 and mechanical alloying in the Mg-Al-Ni system. J Alloy Compd 477(1–2):420–424

    Google Scholar 

  146. Corré S, Bououdina M, Kuriyama N, Fruchart D, Adachi G (1999) Effects of mechanical grinding on the hydrogen storage and electrochemical properties of LaNi5. J Alloy Compd 292:166–173

    Google Scholar 

  147. Fujii H, Munehiro S, Fujii K, Orimo S (2002) Effect of mechanical grinding under Ar and H2 atmospheres on structural and hydriding properties in LaNi5. J Alloy Compd 330–332:747–751

    Google Scholar 

  148. Ares JR, Cuevas F, Percheron-Guégan A (2004) Influence of thermal annealing on the hydrogenation properties of mechanically milled AB5-type alloys. Mater Sci Eng B 108:76–80

    Google Scholar 

  149. Singh A, Singh BK, Davidson DJ, Srivastava ON (2004) Studies on improvement of hydrogen storage capacity of AB5 type: MmNi4.6Fe0.4 alloy. Int J Hydrogen Energy 29:1151–1156

    Google Scholar 

  150. Takeichi N, Senoh H, Takeshita HT, Oishi T, Tanaka H, Kiyobayashi T, Kuriyama N (2004) Hydrogenation properties and structure of Ti-Cr alloy prepared by mechanical grinding. Mater Sci Eng B 108:100–104

    Google Scholar 

  151. Santos SF, Costa ALM, de Castro JFR, dos Santos DS, Botta WJ, Ishikawa TT (2004) Mechanical and reactive milling of a TiCrV BCC solid solution. J Metastable Nanocrystalline Mater 20–21:291–296

    Google Scholar 

  152. Singh BK, Shim G, Cho S-W (2007) Effects of mechanical milling on hydrogen storage properties of Ti0.32Cr0.43V0.25 alloy. Int J Hydrogen Energy 32:4961–4965

    Google Scholar 

  153. Orimo S, Züttel A, Ikeda K, Saruki S, Fukunaga T, Fujii H, Schlapbach L (1999) Hydriding properties of the MgNi-based systems. J Alloy Compd 293–295:437–442

    Google Scholar 

  154. Terashita N, Takahashi M, Kobayashi K, Sasai T, Akiba E (1999) Synthesis and hydriding/dehydriding properties of amorphous Mg2Ni1.9M0.1 alloys mechanically alloyed from Mg2Ni0.9M0.1 (M = none, Ni, Ca, La, Y, Al, Si, Cu and Mn) and Ni powder. J Alloy Compd 293–295:541–545

    Google Scholar 

  155. Varin RA, Czujko T, Wronski ZS (2009) Nanomaterials for solid state hydrogen storage. Springer, New York

    Google Scholar 

  156. Bowman RC Jr (1988) Preparation and properties of amorphous hydrides. Mater Sci Forum 31:197–228

    Google Scholar 

  157. Eliaz N, Eliezer D (1999) An overview of hydrogen interaction with amorphous alloys. Adv Perform Mater 6:5–31

    Google Scholar 

  158. Shechtman D, Blech I, Gratias D, Cahn JW (1984) Metallic phase with long-range orientational order and no translational symmetry. Phys Rev Lett 53(20):1951–1953

    Google Scholar 

  159. Tsai AP (2008) Icosahedral clusters, icosaheral order and stability of quasicrystals - a view of metallurgy. Sci Technol Adv Mater 9:013008

    Google Scholar 

  160. Bindi L, Steinhardt PJ, Yao N, Lu PJ (2009) Natural quasicrystals. Science 324:1306–1309

    Google Scholar 

  161. Takasaki A, Kelton KF (2002) High-pressure hydrogen loading in Ti45Zr38Ni17 amorphous and quasicrystal powders synthesized by mechanical alloying. J Alloy Compd 347:295–300

    Google Scholar 

  162. Takasaki A, Kelton KF (2006) Hydrogen storage in Ti-based quasicrystal powders produced by mechanical alloying. Int J Hydrogen Energy 31:183–190

    Google Scholar 

  163. Bystrzycki J, Polanski M, Malka IE, Komuda A (2009) Hydriding properties of Mg-Al-Zn quasicrystal powder produced by mechanical alloying. Z Kristallogr 224:105–108

    Google Scholar 

  164. Bogdanović B, Schwickardi M (1997) Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. J Alloy Compd 253–254:1–9

    Google Scholar 

  165. Chen P, Xiong Z, Luo J, Lin J, Tan KL (2002) Interaction of hydrogen with metal nitrides and imides. Nature 420:302–304

    Google Scholar 

  166. Schüth F, Bogdanović B, Felderhoff M (2004) Light metal hydrides and complex hydrides for hydrogen storage. Chem Commun 2249-2258

    Google Scholar 

  167. Orimo S, Nakamori Y, Eliseo JR, Züttel A, Jensen CM (2007) Complex hydrides for hydrogen storage. Chem Rev 107:4111–4132

    Google Scholar 

  168. Jensen C, Yang Y, Chou MY (2008) Alanates as hydrogen storage materials. In: Walker G (ed) Solid-state hydrogen storage: materials and chemistry. Woodhead Publishing, Cambridge

    Google Scholar 

  169. Jensen CM, Zidan R, Mariels N, Hee A, Hagen C (1999) Advanced titanium doping of sodium aluminium hydride: segue to a practical hydrogen storage material? Int J Hydrogen Energy 24:461–465

    Google Scholar 

  170. Zidan RA, Takara S, Hee AG, Jensen CM (1999) Hydrogen cycling behavior of zirconium and titanium-zirconium-doped sodium aluminium hydride. J Alloy Compd 285:119–122

    Google Scholar 

  171. Bogdanović B, Felderhoff M, Pommerin A, Schüth F, Spielkamp N (2006) Advanced hydrogen-storage materials based on Sc-, Ce-, and Pr-doped NaAlH4. Adv Mater 18:1198–1201

    Google Scholar 

  172. Jensen CM, Gross KJ (2001) Development of catalytically enhanced sodium aluminium hydride as a hydrogen-storage material. Appl Phys A 72:213–219

    Google Scholar 

  173. Eberle U, Felderhoff M, Schüth F (2009) Chemical and physical solutions for hydrogen storage. Angew Chem Int Ed 48:6608–6630

    Google Scholar 

  174. Lohstroh W, Fichtner M, Breitung W (2009) Complex hydrides as solid storage materials: first safety tests. Int J Hydrogen Energy 34:5981–5985

    Google Scholar 

  175. Graetz J, Lee Y, Reilly JJ, Park S, Vogt T (2005) Structures and thermodynamics of the mixed alkali alanates. Phys Rev B 71:184115

    Google Scholar 

  176. Léon A, Zabara O, Sartori S, Eigen N, Dornheim M, Klassen T, Muller J, Hauback B, Fichtner M (2009) Investigation of (Mg, Al, Li, H)-based hydride and alanate mixtures produced by reactive ball milling. J Alloy Compd 476:425–428

    Google Scholar 

  177. Sartori S, Léon A, Zabara O, Muller J, Fichtner M, Hauback BC (2009) Studies of mixed hydrides based on Mg and Ca by reactive ball milling. J Alloy Compd 476:639–643

    Google Scholar 

  178. Sartori S, Qi X, Eigen N, Muller J, Klassen T, Dornheim M, Hauback BC (2009) A search for new Mg- and K-containing alanates for hydrogen storage. Int J Hydrogen Energy 34:4582–4586

    Google Scholar 

  179. Gregory DH (2008) Lithium nitrides, imides and amides as lightweight, reversible hydrogen stores. J Mater Chem 18:2321–2330

    Google Scholar 

  180. Hino S, Ichikawa T, Ogita N, Udagawa M, Fujii H (2005) Quantitative estimation of NH3 partial pressure in H2 desorbed from the Li-N-H system by Raman spectroscopy. Chem Commun 3038-3040

    Google Scholar 

  181. Uribe FA, Gottesfeld S, Zawodzinski TA Jr (2002) Effect of ammonia as potential fuel impurity on proton exchange membrane fuel cell performance. J Electrochem Soc 149(3):A293–A296

    Google Scholar 

  182. Gregory DH (2008) Imides and amides as hydrogen storage materials. In: Walker G (ed) Solid-state hydrogen storage: materials and chemistry. Woodhead Publishing, Cambridge

    Google Scholar 

  183. Züttel A, Rentsch S, Fischer P, Wenger P, Sudan Mauron P, Emmenegger C (2003) Hydrogen storage properties of LiBH4. J Alloy Compd 356–357:515–520

    Google Scholar 

  184. Nakamori Y, Orimo S (2008) Borohydrides as hydrogen storage materials. In: Walker G (ed) Solid-state hydrogen storage: materials and chemistry. Woodhead Publishing, Cambridge

    Google Scholar 

  185. Walker G (2008) Multicomponent hydrogen storage systems. In: Walker G (ed) Solid-state hydrogen storage: materials and chemistry. Woodhead Publishing, Cambridge

    Google Scholar 

  186. Orimo S, Fujii H (2001) Materials science of Mg-Ni-based new hydrides. Appl Phys A 72:167–186

    Google Scholar 

  187. Blomqvist H, Rönnebro E, Noréus D, Kujii T (2002) Competing stabilisation mechanisms in Mg2NiH4. J Alloy Compd 330–332:268–270

    Google Scholar 

  188. Häussermann U, Blomqvist H, Noréus D (2002) Bonding and stability of the hydrogen storage material Mg2NiH4. Inorg Chem 41:3684–3692

    Google Scholar 

  189. Mao WL, Koh CA, Sloan ED (2007) Clathrate hydrates under pressure. Phys Today 60(10):42–47

    Google Scholar 

  190. Mao WL, Mao H, Goncharov AF, Struzhkin VV, Guo Q, Hu J, Shu J, Hemley RJ, Somayazulu M, Zhao Y (2002) Hydrogen clusters in clathrate hydrate. Science 297:2247–2249

    Google Scholar 

  191. Struzhkin VV, Militzer B, Mao WL, Mao HK, Hemley RJ (2007) Hydrogen storage in molecular clathrates. Chem Rev 107:4133–4151

    Google Scholar 

  192. Florusse LJ, Peters CJ, Schoonman J, Hester KC, Koh CA, Dec SF, Marsh KN, Sloan ED (2004) Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate. Science 306:469–471

    Google Scholar 

  193. Lee H, Lee J, Kim DY, Park J, Seo Y-T, Zeng H, Moudrakovski IL, Ratcliffe CI, Ripmeester JA (2005) Tuning clathrate hydrates for hydrogen storage. Nature 434:743–746

    Google Scholar 

  194. Papadimitriou NI, Tsimpanogiannis IN, Papaioannou AT, Stubos AK (2008) Evaluation of the hydrogen-storage capacity of pure H2 and binary H2-THF hydrates with Monte Carlo simulations. J Phys Chem C 112:10294–10302

    Google Scholar 

  195. Papadimitriou NI, Tsimpanogiannis IN, Peters CJ, Papaioannou AT, Stubos AK (2008) Hydrogen storage in sH hydrates: a Monte Carlo study. J Phys Chem B 112:14206–14211

    Google Scholar 

  196. Duarte ARC, Shariati A, Rovetto LJ, Peters CJ (2008) Water cavities of sH clathrate hydrate stabilized by molecular hydrogen: phase equilibrium measurements. J Phys Chem B 112(7):1888–1889

    Google Scholar 

  197. Strobel TA, Koh CA, Sloan ED (2008) Water cavities of sH clathrate hydrate stabilized by molecular hydrogen. J Phys Chem B 112(7):1885–1887

    Google Scholar 

  198. Daschbach JL, Chang T-M, Corrales LR, Dang LX, McGrail P (2006) Molecular mechanisms of hydrogen-loaded β-hydroquinone clathrate. J Phys Chem B 110:17291–17295

    Google Scholar 

  199. Strobel TA, Kim Y, Andrews GS, Ferrell JR III, Koh CA, Herring AM, Sloan ED (2008) Chemical-clathrate hybrid hydrogen storage: storage in both guest and host. J Am Chem Soc 130:14975–14977

    Google Scholar 

  200. Yoon J-H, Lee Y-J, Park J, Kawamura T, Yamamoto Y, Komai T, Takeya S, Han SS, Lee J-W, Lee Y (2009) Hydrogen molecules trapped in interstitial host channels of α-hydroquinone. ChemPhysChem 10:352–355

    Google Scholar 

  201. Su F, Bray CL, Tan B, Cooper AI (2008) Rapid and reversible hydrogen storage in clathrate hydrates using emulsion-templated polymers. Adv Mater 20:2663–2666

    Google Scholar 

  202. Su F, Bray CL, Carter BO, Overend G, Cropper C, Iggo JA, Khimyak YZ, Fogg AM, Cooper AI (2009) Reversible hydrogen storage in hydrogel clathrate hydrates. Adv Mater 21:1–5

    Google Scholar 

  203. Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150

    Google Scholar 

  204. Olivier-Bourbigou H, Magna L, Morvan D (2010) Ionic liquids and catalysis: recent progress from knowledge to applications. Appl Catal A 373:1–56

    Google Scholar 

  205. Stracke MP, Ebeling G, Cataluña R, Dupont J (2007) Hydrogen-storage materials based on imidazolium ionic liquids. Energy Fuels 21:1695–1698

    Google Scholar 

  206. Wang L, Yang RT (2008) New sorbents for hydrogen storage by hydrogen spillover–a review. Energy Environ Sci 1:268–279

    Google Scholar 

  207. Cheng H, Chen L, Cooper AC, Sha X, Pez GP (2008) Hydrogen spillover in the context of hydrogen storage using solid-state materials. Energy Environ Sci 1:338–354

    Google Scholar 

  208. Conner WC, Falconer JL (1995) Spillover in heterogeneous catalysis. Chem Rev 95:759–788

    Google Scholar 

  209. Lachawiec AJ, Qi G, Yang RT (2005) Hydrogen storage in nanostructured carbons by spillover: bridge-building enhancement. Langmuir 21:11418–11424

    Google Scholar 

  210. Rao CNR, Nath M (2003) Inorganic nanotubes. Dalton Trans 1-24

    Google Scholar 

  211. Seayad AM, Antonelli DM (2004) Recent advances in hydrogen storage in metal-containing inorganic nanostructures and related materials. Adv Mater 16(9–10):765–777

    Google Scholar 

  212. Ma R, Bando Y, Zhu H, Sato T, Xu C, Wu D (2002) Hydrogen uptake in boron nitride nanotubes at room temperature. J Am Chem Soc 124:7672–7673

    Google Scholar 

  213. Oku T, Kuno M, Narita I (2004) Hydrogen storage in boron nitride nanomaterials studied by TG/DTA and cluster calculation. J Phys Chem Solids 65:549–552

    Google Scholar 

  214. Chen J, Li S-L, Tao Z-L, Shen Y-T, Cui C-X (2003) Titanium disulfide nanotubes as hydrogen-storage materials. J Am Chem Soc 125:5284–5285

    Google Scholar 

  215. Chen J, Li SL, Tao ZL (2003) Novel hydrogen storage properties of MoS2 nanotubes. J Alloy Compd 356–357:413–417

    Google Scholar 

  216. Tang C, Bando Y, Ding X, Qi S, Golberg D (2002) Catalyzed collapse and enhanced hydrogen storage of BN nanotubes. J Am Chem Soc 124(49):14550–14551

    Google Scholar 

  217. Bavykin DV, Lapkin AA, Plucinski PK, Friedrich JM, Walsh FC (2005) Reversible storage of molecular hydrogen by sorption into multilayered TiO2 nanotubes. J Phys Chem B 109:19422–19427

    Google Scholar 

  218. Pan H, Feng YP, Lin J (2007) Hydrogen adsorption by tungsten carbide nanotube. Appl Phys Lett 90:223104

    Google Scholar 

  219. Lan J, Cheng D, Cao D, Wang W (2008) Silicon nanotube as a promising candidate for hydrogen storage: from the first principle calculations to Grand Canonical Monte Carlo simulations. J Phys Chem C 112:5598–5604

    Google Scholar 

  220. Mpourmpakis G, Froudakis GE, Lithoxoos GP, Samios J (2006) SiC nanotubes: a novel material for hydrogen storage. Nano Lett 6(8):1581–1583

    Google Scholar 

  221. Binewale RB, Rayalu S, Devotta S, Ichikawa M (2008) Chemical hydrides: a solution to high capacity hydrogen storage and supply. Int J Hydrogen Energy 33:360–365

    Google Scholar 

  222. Christensen CH, Johannessen T, Sørensen RZ, Nørskov JK (2006) Towards an ammonia-mediated hydrogen economy? Catal Today 111:140–144

    Google Scholar 

  223. Wiswall R (1978) Hydrogen storage in metals. In: Alefeld G, Völkl J (eds) Topics in applied physics vol. 29: hydrogen in metals II. Application-oriented properties. Springer-Verlag, Berlin

    Google Scholar 

  224. Bull DJ, Weidner E, Shabalin IL, Telling MTF, Jewell CM, Gregory DH, Ross DK (2010) Pressure-dependent deuterium reaction pathways in the Li-N-D system. Phys Chem Chem Phys 12:2089–2097

    Google Scholar 

  225. Lemmon EW, Huber ML, McLinden MO (2007) NIST standard reference database 23: reference fuid thermodynamic and transport properties-REFPROP, version 8.0, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg

    Google Scholar 

  226. Hodoshima S, Arai H, Saito Y (2003) Liquid-film-type catalytic decalin dehydrogeno-aromatization for long-term storage and long-distance transportation of hydrogen. Int J Hydrogen Energy 28:197–204

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darren P. Broom .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Broom, D.P. (2011). Potential Storage Materials. In: Hydrogen Storage Materials. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-0-85729-221-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-221-6_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-220-9

  • Online ISBN: 978-0-85729-221-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics