Skip to main content

Modeling self-organization in pedestrians and animal groups from macroscopic and microscopic viewpoints

  • Chapter
  • First Online:
Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences

Summary

This paper is concerned with mathematical modeling of intelligent systems, such as human crowds and animal groups. In particular, the focus is on the emergence of different self-organized patterns from nonlocality and anisotropy of the interactions among individuals. A mathematical technique by time-evolving measures is introduced to deal with both macroscopic and microscopic scales within a unified modeling framework. Then self-organization issues are investigated and numerically reproduced at the proper scale, according to the kind of agents under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, second edition, 2008.

    MATH  Google Scholar 

  2. I. Aoki. An analysis of the schooling behavior of fish: internal organization and communication process. Bull. Ocean Res. Inst. Univ. Tokyo, 12:1–65, 1980.

    MathSciNet  Google Scholar 

  3. M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale, and V. Zdravkovic. Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. P. Natl. Acad. Sci. USA, 105(4):1232–1237, 2008.

    Article  Google Scholar 

  4. N. Bellomo and C. Dogbé. On the modelling crowd dynamics from scaling to hyperbolic macroscopic models. Math. Models Methods Appl. Sci., 18(suppl.):1317–1345, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  5. C. Canuto, F. Fagnani, and P. Tilli. A Eulerian approach to the analysis of rendez-vous algorithms. In Proceedings of the 17th IFAC World Congress (IFAC’08), pages 9039–9044. Seoul, Korea, July 2008.

    Google Scholar 

  6. J. A. Carrillo, M. Fornasier, J. Rosado, and G. Toscani. Asymptotic flocking dynamics for the kinetic Cucker-Smale model. SIAM J. Math. Anal., 42(1): 218–236, 2010.

    Article  MathSciNet  Google Scholar 

  7. H. Chaté, F. Ginelli, G. Grégoire, F. Peruani, and F. Raynaud. Modeling collective motion: variations on the Vicsek model. Eur. Phys. J. B, 64(3):451–456, 2008.

    Article  Google Scholar 

  8. R. M. Colombo and M. D. Rosini. Pedestrian flows and non-classical shocks. Math. Methods Appl. Sci., 28(13):1553–1567, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  9. R. M. Colombo and M. D. Rosini. Existence of nonclassical solutions in a pedestrian flow model. Nonlinear Anal. Real, 10(5):2716–2728, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  10. V. Coscia and C. Canavesio. First-order macroscopic modelling of human crowd dynamics. Math. Models Methods Appl. Sci., 18(suppl.):1217–1247, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  11. I. D. Couzin, J. Krause, N. R. Franks, and S. A. Levin. Effective leadership and decision-making in animal groups on the move. Nature, 433:513–516, 2005.

    Article  Google Scholar 

  12. I. D. Couzin, J. Krause, R. James, G. D. Ruxton, and N. R. Franks. Collective memory and spatial sorting in animal groups. J. Theor. Biol., 218(1):1–11, 2002.

    Article  MathSciNet  Google Scholar 

  13. E. Cristiani, P. Frasca, and B. Piccoli. Effects of anisotropic interactions on the structure of animal groups. J. Math. Biol., to appear.

    Google Scholar 

  14. F. Cucker and S. Smale. Emergent behavior in flocks. IEEE Trans. Autom. Contrl., 52(5):852–862, 2007.

    Article  MathSciNet  Google Scholar 

  15. L. Edelstein-Keshet. Mathematical models of swarming and social aggregation. In Proceedings of the 2001 International Symposium on Nonlinear Theory and Its Applications, pages 1–7, Miyagi, Japan, 2001.

    Google Scholar 

  16. G. Grégoire, H. Chaté, and Y. Tu. Moving and staying together without a leader. Physica D, 181(3–4):157–170, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  17. S. Gueron, S. A. Levin, and D. I. Rubenstein. The dynamics of herds: from individuals to aggregations. J. Theor. Biol., 182(1):85–98, 1996.

    Article  Google Scholar 

  18. S.-Y. Ha and E. Tadmor. From particle to kinetic and hydrodynamic descriptions of flocking. Kinet. Relat. Models, 1(3):415–435, 2008.

    MATH  MathSciNet  Google Scholar 

  19. D. Helbing, I. J. Farkas, P. Molnár, and T. Vicsek. Simulation of pedestrian crowds in normal and evacuation situations. In M. Schreckenberg and S. D. Sharma, editors, Pedestrian and Evacuation Dynamics, pages 21–58. Springer, Berlin, 2002.

    Google Scholar 

  20. D. Helbing and A. Johansson. Quantitative agent-based modeling of human interactions in space and time. In F. Amblard, editor, Proceedings of The Fourth Conference of the European Social Simulation Association (ESSA2007), pages 623–637. September 2007.

    Google Scholar 

  21. D. Helbing and A. Johansson. Pedestrian, crowd, and evacuation dynamics. In R. A. Meyers, editor, Encyclopedia of Complexity and Systems Science, volume 16, pages 6476–6495. Springer New York, 2009.

    Google Scholar 

  22. D. Helbing, A. Johansson, J. Mathiesen, M. H. Jensen, and A. Hansen. Analytical approach to continuous and intermittent bottleneck flows. Phys. Rev. Lett., 97(16):168001–1–4, 2006.

    Article  Google Scholar 

  23. D. Helbing, P. Molnár, I. J. Farkas, and K. Bolay. Self-organizing pedestrian movement. Environment and Planning B: Planning and Design, 28(3):361–383, 2001.

    Article  Google Scholar 

  24. D. Helbing, F. Schweitzer, J. Keltsch, and P. Molnár. Active walker model for the formation of human and animal trail systems. Phys. Rev. E, 56(3): 2527–2539, 1997.

    Article  Google Scholar 

  25. C. K. Hemelrijk and H. Hildenbrandt. Self-organized shapes and frontal density of fish schools. Ethology, 114(3):245–254, 2008.

    Article  Google Scholar 

  26. F. H. Heppner. Avian flight formations. Bird-Banding, 45(2):160–169, 1974.

    Google Scholar 

  27. S. P. Hoogendoorn and P. H. L. Bovy. State-of-the-art of vehicular traffic flow modelling. J. Syst. Cont. Eng., 215(4):283–303, 2001.

    Google Scholar 

  28. S. P. Hoogendoorn and W. Daamen. Self-organization in pedestrian flow. In Traffic and Granular Flow ’03, pages 373–382. Springer, Berlin Heidelberg, 2005.

    Chapter  Google Scholar 

  29. S. P. Hoogendoorn, W. Daamen, and P. H. L. Bovy. Extracting microscopic pedestrian characteristics from video data. In Transportation Research Board annual meeting 2003, pages 1–15. National Academy Press, Washington DC, 2003.

    Google Scholar 

  30. R. L. Hughes. A continuum theory for the flow of pedestrians. Transport. Res. B, 36(6):507–535, 2002.

    Article  Google Scholar 

  31. R. L. Hughes. The flow of human crowds. Annu. Rev. Fluid Mech., 35:169–182, 2003.

    Article  Google Scholar 

  32. A. Huth and C. Wissel. The simulation of the movement of fish schools. J. Theor. Biol., 156(3):365–385, 1992.

    Article  Google Scholar 

  33. Y. Inada and K. Kawachi. Order and flexibility in the motion of fish schools. J. Theor. Biol., 214(3):371–387, 2002.

    Article  Google Scholar 

  34. J. Krause and G. D. Ruxton. Living in Groups. Oxford University Press, Oxford, 2002.

    Google Scholar 

  35. H. Kunz and C. K. Hemelrijk. Artificial fish schools: collective effects of school size, body size, and body form. Artificial Life, 9(3):237–253, 2003.

    Article  Google Scholar 

  36. Y.-X. Li, R. Lukeman, and L. Edelstein-Keshet. Minimal mechanisms for school formation in self-propelled particles. Physica D, 237(5):699–720, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  37. R. Lukeman, Y.-X. Li, and L. Edelstein-Keshet. A conceptual model for milling formations in biological aggregates. Bull. Math. Biol., 71(2):352–382, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  38. B. Maury, A. Roudneff-Chupin, and F. Santambrogio. A macroscopic crowd motion model of gradient flow type. Math. Models Methods Appl. Sci., to appear.

    Google Scholar 

  39. B. Maury and J. Venel. Handling of contacts in crowd motion simulations. In Traffic and Granular Flow ’07, volume 1, pages 171–180. Springer Berlin Heidelberg, 2007.

    Google Scholar 

  40. B. Maury and J. Venel. Un modèle de mouvements de foule. In Esaim: Proceedings, volume 18, pages 143–152, 2007.

    Google Scholar 

  41. B. Maury and J. Venel. A mathematical framework for a crowd motion model. C. R. Math. Acad. Sci. Paris, 346(23–24):1245–1250, 2008.

    MATH  MathSciNet  Google Scholar 

  42. J. K. Parrish, S. V. Viscido, and D. Grunbaum. Self-organized fish schools: an examination of emergent properties. Biol. Bull., 202(3):296–305, 2002.

    Article  Google Scholar 

  43. B. Piccoli and A. Tosin. Time-evolving measures and macroscopic modeling of pedestrian flow. Arch. Ration. Mech. Anal., to appear.

    Google Scholar 

  44. B. Piccoli and A. Tosin. Pedestrian flows in bounded domains with obstacles. Contin. Mech. Thermodyn., 21(2):85–107, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  45. B. Piccoli and A. Tosin. Vehicular traffic: A review of continuum mathematical models. In R. A. Meyers, editor, Encyclopedia of Complexity and Systems Science, volume 22, pages 9727–9749. Springer,New York, 2009.

    Chapter  Google Scholar 

  46. E. Schröedinger. What is Life? Mind and Matter. Cambridge University Press, Cambridge, 1967.

    Google Scholar 

  47. C. M. Topaz, A. L. Bertozzi, and M. A. Lewis. A nonlocal continuum model for biological aggregation. Bull. Math. Biol., 68(7):1601–1623, 2006.

    Article  MathSciNet  Google Scholar 

  48. T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet. Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett., 75(6): 1226–1229, 1995.

    Article  Google Scholar 

  49. C. Villani. A review of mathematical topics in collisional kinetic theory. In Handbook of mathematical fluid dynamics, Vol. I, pages 71–305. North-Holland, Amsterdam, 2002.

    Chapter  Google Scholar 

  50. C. Villani. Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2009. Old and new.

    Google Scholar 

  51. K. Warburton and J. Lazarus. Tendency-distance models of social cohesion in animal groups. J. Theor. Biol., 150(4):473–488, 1991.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emiliano Cristiani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cristiani, E., Piccoli, B., Tosin, A. (2010). Modeling self-organization in pedestrians and animal groups from macroscopic and microscopic viewpoints. In: Naldi, G., Pareschi, L., Toscani, G. (eds) Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4946-3_13

Download citation

Publish with us

Policies and ethics