Skip to main content

Decomposing Symmetric Powers of Certain Modular Representations of Cyclic Groups

  • Chapter
  • First Online:
Symmetry and Spaces

Part of the book series: Progress in Mathematics ((PM,volume 278))

Summary

For a prime number p, we construct a generating set for the ring of invariants for the p+1 dimensional indecomposable modular representation of a cyclic group of order p 2, and show that the Noether number for the representation is p 2 + p−3. We then use the constructed invariants to explicitly describe the decomposition of the symmetric algebra as a module over the group ring, confirming the Periodicity Conjecture of Ian Hughes and Gregor Kemper for this case. In the final section, we use our results to compute the Hilbert series for the corresponding ring of invariants together with some other related generating functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.L. Alperin, Local representation theory, Cambridge Univ. Press, 1986.

    MATH  Google Scholar 

  2. D.J. Benson, Representations and cohomology I: Basic representation theory of finite groups and associative algebras, Cambridge Univ. Press, 1991.

    MATH  Google Scholar 

  3. W. Bosma, J.J. Cannon and C. Playoust, The Magma algebra system I: the user language, J. Symbolic Comput. 24 (1997) 235–265.

    Article  MATH  MathSciNet  Google Scholar 

  4. W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge Univ. Press, 1993.

    MATH  Google Scholar 

  5. H.E.A. Campbell, I.P. Hughes, G. Kemper, R.J. Shank and D.L. Wehlau, Depth of modular invariant rings, Transform. Groups 5 (2000) no. 1, 21–34.

    Article  MathSciNet  Google Scholar 

  6. L. Evens, The Cohomology of Groups, Oxford Univ. Press, 1991.

    MATH  Google Scholar 

  7. N.J. Fine, Binomial coefficients modulo a prime, Amer. Math. Monthly 54 (1947) 589–592.

    Article  MATH  MathSciNet  Google Scholar 

  8. P. Fleischmann, Relative Trace Ideals and Cohen-Macaulay Quotients of Modular Invariant Rings, in: P. Dräxler, G.O. Michler, C. M. Ringel, eds., Computational Methods for Representations of Groups and Algebras, Euroconference in Essen, April 1-5 1997, Progress in Mathematics 173, Birkhäuser, 1999.

    Google Scholar 

  9. P. Fleischmann, M. Sezer, R.J. Shank and C.F. Woodcock, The Noether numbers for cyclic groups of prime order, Advances in Mathematics 207 (2006) no. 1, 149–155.

    Article  MATH  MathSciNet  Google Scholar 

  10. I. Hughes and G. Kemper, Symmetric powers of modular representations, Hilbert series and degree bounds, Comm. in Alg. 28 (2000) 2059–2088.

    Article  MATH  MathSciNet  Google Scholar 

  11. D.B. Karagueuzian and P. Symonds, The module structure of a group action on a polynomial ring: a finiteness theorem, J. Amer. Math. Soc. 20 (2007) 931–967.

    Article  MATH  MathSciNet  Google Scholar 

  12. S. Mac Lane, Homology, Springer–Verlag, 1963.

    Google Scholar 

  13. R.J. Shank, S.A.G.B.I. bases for rings of formal modular seminvariants, Comment. Math. Helv. 73 (1998) no. 4, 548–565.

    Article  MATH  MathSciNet  Google Scholar 

  14. R.J. Shank and D.L. Wehlau, Noether numbers for subrepresentations of cyclic groups of prime order, Bull. London Math. Soc. 34 (2002) 438–450.

    Article  MATH  MathSciNet  Google Scholar 

  15. R.J. Shank and D.L. Wehlau, Computing modular invariants of p-groups, J. Symb. Comp. 34 (2002) no. 5, 307–327.

    Article  MATH  MathSciNet  Google Scholar 

  16. P. Symonds, Cyclic group actions on polynomial rings, Bull. London Math. Soc. 39 (2007) 181–188.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. James Shank .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Birkhäuser Boston

About this chapter

Cite this chapter

Shank, R.J., Wehlau, D.L. (2010). Decomposing Symmetric Powers of Certain Modular Representations of Cyclic Groups. In: Campbell, H., Helminck, A., Kraft, H., Wehlau, D. (eds) Symmetry and Spaces. Progress in Mathematics, vol 278. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4875-6_9

Download citation

Publish with us

Policies and ethics