Skip to main content

Aberrant Epithelial Differentiation in Ovarian Cancer

  • Chapter
  • First Online:
Ovarian Cancer

Part of the book series: Cancer Treatment and Research ((CTAR,volume 149))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fusenig NE, Breitkreutz D, Boukamp P, Tomakidi P, Stark HJ. Differentiation and tumor progression. Recent Results Cancer Res. 1995;139:1–19.

    CAS  PubMed  Google Scholar 

  2. Lynch RG. Differentiation and cancer: the conditional autonomy of phenotype. Proc Natl Acad Sci USA. 1995;92:647–648.

    Article  CAS  PubMed  Google Scholar 

  3. Rheinwald JG, Beckett MA. Defective terminal differentiation in culture as a consistent and selectable character of malignant human keratinocytes. Cell. 1980;22:629–632.

    Article  CAS  PubMed  Google Scholar 

  4. Richardson GS, Scully RE, Nikrui N, Nelson JH Jr. Common epithelial cancer of the ovary (2). N Engl J Med. 1985;312:474–483.

    Article  CAS  PubMed  Google Scholar 

  5. Capo-chichi CD, Roland IH, Vanderveer L, et al. Anomalous expression of epithelial differentiation-determining GATA factors in ovarian tumorigenesis. Cancer Res. 2003;63:4967–4977.

    CAS  PubMed  Google Scholar 

  6. Caslini C, Capo-Chichi CD, Roland IH, Nicolas E, Yeung AT, Xu XX. Histone modifications silence the GATA transcription factor genes in ovarian cancer. Oncogene. 2006;25:5446–5461.

    Article  CAS  PubMed  Google Scholar 

  7. Bielinska M, Narita N, Wilson DB. Distinct roles for visceral endoderm during embryonic mouse development. Int J Dev Biol. 1999;43:183–205.

    CAS  PubMed  Google Scholar 

  8. Lu CC, Brennan J, Robertson EJ. From fertilization to gastrulation: axis formation in the mouse embryo. Curr Opin Genet Dev. 2001;11:384–392.

    Article  CAS  PubMed  Google Scholar 

  9. Capo-Chichi CD, Rula ME, Smedberg JL, Vanderveer L, Parmacek MS, Morrisey EE, Godwin AK, Xu XX. Perception of differentiation cues by GATA factors in primitive endoderm lineage determination of mouse embryonic stem cells. Dev Biol. 2005;286:574–586.

    Article  CAS  PubMed  Google Scholar 

  10. Molkentin JD. The zinc finger-containing transcription factors GATA-4, -5, and -6. Ubiquitously expressed regulators of tissue-specific gene expression. J Biol Chem . 2000;275:38949–38952.

    Article  CAS  PubMed  Google Scholar 

  11. Orkin SH. GATA-binding transcription factors in hematopoietic cells. Blood. 1992;80:575–581.

    CAS  PubMed  Google Scholar 

  12. Simon MC. Gotta have GATA. Nat Genet. 1995;11:9–11.

    Article  CAS  PubMed  Google Scholar 

  13. Soudais C, Bielinska M, Heikinheimo M, et al. Targeted mutagenesis of the transcription factor GATA-4 gene in mouse embryonic stem cells disrupts visceral endoderm differentiation in vitro. Development. 1995;121:3877–3888.

    CAS  PubMed  Google Scholar 

  14. Morrisey EE, Ip HS, Lu MM, Parmacek MS. GATA-6: a zinc finger transcription factor that is expressed in multiple cell lineages derived from lateral mesoderm. Dev Biol. 1996;177:309–322.

    Article  CAS  PubMed  Google Scholar 

  15. Fujikura J, Yamato E, Yonemura S, et al. Differentiation of embryonic stem cells is induced by GATA factors. Genes Dev. 2002;16:784–789.

    Article  CAS  PubMed  Google Scholar 

  16. Kuo CT, Morrisey EE, Anandappa R, et al. GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev. 1997;11:1048–1060.

    Article  CAS  PubMed  Google Scholar 

  17. Watt AJ, Zhao R, Li J, Duncan SA. Development of the mammalian liver and ventral pancreas is dependent on GATA4. BMC Dev Biol. 2007;7:37.

    Article  PubMed  Google Scholar 

  18. Yang H, Lu MM, Zhang L, Whitsett JA, Morrisey EE. GATA6 regulates differentiation of distal lung epithelium. Development. 2002;129:2233–2246.

    Article  CAS  PubMed  Google Scholar 

  19. Jacobsen CM, Narita N, Bielinska M, Syder AJ, Gordon JI, Wilson DB. Genetic mosaic analysis reveals that GATA-4 is required for proper differentiation of mouse gastric epithelium. Dev Biol. 2002;241:34–46.

    Article  CAS  PubMed  Google Scholar 

  20. Gao X, Sedgwick T, Shi YB, Evans T. Distinct functions are implicated for the GATA-4, -5, and -6 transcription factors in the regulation of intestine epithelial cell differentiation. Mol Cell Biol. 1998;18:2901–2911.

    CAS  PubMed  Google Scholar 

  21. Ketola I, Rahman N, Toppari J, et al. Expression and regulation of transcription factors GATA-4 and GATA-6 in developing mouse testis. Endocrinology. 1999;140:1470–1480.

    Article  CAS  PubMed  Google Scholar 

  22. Heikinheimo M, Ermolaeva M, Bielinska M, et al. Expression and hormonal regulation of transcription factors GATA-4 and GATA-6 in the mouse ovary. Endocrinology. 1997;138:3505–3514.

    Article  CAS  PubMed  Google Scholar 

  23. Laitinen MP, Anttonen M, Ketola I, Wilson DB, Ritvos O, Butzow R, Heikinheimo M. Transcription factors GATA-4 and GATA-6 and a GATA family cofactor, FOG-2, are expressed in human ovary and sex cord-derived ovarian tumors. J Clin Endocrinol Metab. 2000;85:3476–3483.

    Article  CAS  PubMed  Google Scholar 

  24. Asselin-Labat ML, Sutherland KD, Barker H, et al. Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol. 2007;9:201–209.

    Article  CAS  PubMed  Google Scholar 

  25. Kouros-Mehr H, Slorach EM, Sternlicht MD, Werb Z. GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell. 2006;127:1041–1055.

    Article  CAS  PubMed  Google Scholar 

  26. Fazili Z, Sun W, Mittelstaedt S, Cohen C, Xu XX. Disabled-2 inactivation is an early step in ovarian tumorigenicity. Oncogene. 1999;18:3104–3113.

    Article  CAS  PubMed  Google Scholar 

  27. Morrisey EE, Musco S, Chen MY, Lu MM, Leiden JM, Parmacek MS. The gene encoding the mitogen-responsive phosphoprotein Dab2 is differentially regulated by GATA-6 and GATA-4 in the visceral endoderm. J Biol Chem. 2000;275:19949–19954.

    Article  CAS  PubMed  Google Scholar 

  28. Yang DH, Smith ER, Cohen C, et al. Molecular events associated with dysplastic morphological transformation and initiation of ovarian tumorigenicity. Cancer. 2002;94:2380–2392.

    Article  CAS  PubMed  Google Scholar 

  29. Sheng Z, Sun W, Smith E, Cohen C, Sheng Z, Xu XX. Restoration of positioning control following disabled-2 expression in ovarian and breast tumor cells. Oncogene. 2000;19:4847–4854.

    Article  CAS  PubMed  Google Scholar 

  30. Bai Y, Akiyama Y, Nagasaki H, et al. Distinct expression of CDX2 and GATA4/5, development-related genes, in human gastric cancer cell lines. Mol Carcinog. 2000;28:184–188.

    Article  CAS  PubMed  Google Scholar 

  31. Baylin S, Bestor TH. Altered methylation patterns in cancer cell genomes: cause or consequence? Cancer Cell. 2002;1:299–305.

    Article  CAS  PubMed  Google Scholar 

  32. Kouros-Mehr H, Bechis SK, Slorach EM, et al. GATA-3 links tumor differentiation and dissemination in a luminal breast cancer model. Cancer Cell. 2008;13:141–152.

    Article  CAS  PubMed  Google Scholar 

  33. Kamnasaran D, Qian B, Hawkins C, Stanford WL, Guha A. GATA6 is an astrocytoma tumor suppressor gene identified by gene trapping of mouse glioma model. Proc Natl Acad Sci U S A. 2007;104:8053–8058.

    Article  CAS  PubMed  Google Scholar 

  34. Bleau AM, Holland EC. Trapping the mouse genome to hunt human alterations. Proc Natl Acad Sci U S A. 2007;104:7737–7738.

    Article  CAS  PubMed  Google Scholar 

  35. Wolffe AP. Chromatin and gene regulation at the onset of embryonic development. Reprod Nut Dev. 1996;36:581–606.

    Google Scholar 

  36. Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293:1074–1080.

    Article  CAS  PubMed  Google Scholar 

  37. Gregory PD, Wagner K, Horz W. Histone acetylation and chromatin remodeling. Exp Cell Res. 2001;265:195–202.

    Article  CAS  PubMed  Google Scholar 

  38. Santos-Rosa H, Schneider R, Bannister AJ, et al. Active genes are tri-methylated at K4 of histone H3. Nature. 2002;419:407–411.

    Article  CAS  PubMed  Google Scholar 

  39. Schneider R, Bannister AJ, Myers FA, Thorne AW, Crane-Robinson C, Kouzarides T. Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nat Cell Biol. 2004;6:73–77.

    Article  CAS  PubMed  Google Scholar 

  40. Lachner M, O'Carroll D, Rea S, Mechtler K, Jenuwein T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature. 2001;410:116–120.

    Article  CAS  PubMed  Google Scholar 

  41. Jones PA, Laird PW. Cancer epigenetics comes of age. Nat Genet. 1999;21:163–167.

    Article  CAS  PubMed  Google Scholar 

  42. Herman JG, Baylin SB, N Engl J Med. 2003;349:2042–2054.

    Google Scholar 

  43. Hake SB, Xiao A, Allis CD. Linking the epigenetic ‘language’ of covalent histone modifications to cancer. Br J Cancer. 2004;90:761–769.

    Article  CAS  PubMed  Google Scholar 

  44. Mutskov V, Felsenfeld G. Silencing of transgene transcription precedes methylation of promoter DNA and histone H3 lysine 9. EMBO J. 2004;23:138–149.

    Article  CAS  PubMed  Google Scholar 

  45. Bachman KE, Park BH, Rhee I, et al. Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell. 2003;3:89–95.

    Article  CAS  PubMed  Google Scholar 

  46. Wakana K, Akiyama Y, Aso T, Yuasa Y. Involvement of GATA-4/-5 transcription factors in ovarian carcinogenesis. Cancer Lett. 2006;241:281–288.

    Article  CAS  PubMed  Google Scholar 

  47. Dance AL, Miller M, Seragaki S, et al. Regulation of myosin-VI targeting to endocytic compartments. Traffic. 2004;5:798–813.

    Article  CAS  PubMed  Google Scholar 

  48. Yang DH, Cai KQ, Roland IH, Smith ER, Xu XX. Disabled-2 is an epithelial surface positioning gene. J Biol Chem. 2007;282:13114–13122.

    Article  CAS  PubMed  Google Scholar 

  49. Capo-chichi CD, Smith ER, Yang DH, et al. Dynamic alterations of extracellular environment of ovarian surface epithelial cells in pre-malignant transformation, tumorigenicity, and metastasis. Cancer. 2002;95:1802–1815.

    Article  PubMed  Google Scholar 

  50. Stenbeck F, Wasenius V-M. Basement membrane structures in tumors of the ovary. Eur J Obstet Gynec Reprod Biol. 1985;20:357–371.

    Article  Google Scholar 

  51. Rossant J. Stem cells and early lineage development. Cell. 2008;132:527–531.

    Article  CAS  PubMed  Google Scholar 

  52. Lobo NA, Shimono Y, Qian D, Clarke MF. The biology of cancer stem cells. Annu Rev Cell Dev Biol.2007;23:675–699.

    Article  CAS  PubMed  Google Scholar 

  53. Polyak K. Breast cancer stem cells: a case of mistaken identity? Stem Cell Rev. 2007;3:107–109.

    Article  PubMed  Google Scholar 

  54. Bapat SA, Mali AM, Koppikar CB, Kurrey NK. Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res. 2005;65:3025–3029.

    CAS  PubMed  Google Scholar 

  55. Wani AA, Sharma N, Shouche YS, Bapat SA. Nuclear-mitochondrial genomic profiling reveals a pattern of evolution in epithelial ovarian tumor stem cells. Oncogene. 2006;25:6336–6344.

    Article  CAS  PubMed  Google Scholar 

  56. Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, et al. Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian inhibiting substance responsiveness. Proc Natl Acad Sci U S A. 2006;103:11154–11159.

    Article  CAS  PubMed  Google Scholar 

  57. Bast RC Jr, Boyer CM, Jacobs I, et al. Cell growth regulation in epithelial ovarian cancer. Cancer. 1993;71:1597–1601.

    PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the excellent technical assistance from Jennifer Smedberg and Malgorzata Rula in the laboratory research that produced the results cited in this chapter. We are grateful to the laboratory members for their suggestions, comments, and reading and editing during the course of the experiments and preparation of the manuscript. These studies were supported by funds from grants R01 CA095071, CA79716, and CA75389 to X.X. Xu from NCI, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang- Xi Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Smith, E.R., Cai, K.Q., Capo-chichi, C.D., Xu, X.X. (2009). Aberrant Epithelial Differentiation in Ovarian Cancer. In: Stack, M., Fishman, D. (eds) Ovarian Cancer. Cancer Treatment and Research, vol 149. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-98094-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-98094-2_7

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-98093-5

  • Online ISBN: 978-0-387-98094-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics