Skip to main content

The high-voltage, brief pulse width stimulus train applied by the latest generations of conducted electrical weapons (CEWs), such as the TASER® M26 and X26 CEWs, are intended primarily to strongly activate skeletal muscle contraction (thus disabling the target individual through incapacitation of their ability to move and to stand), while secondarily also eliciting strong sensations of pain and/or exhaustion. TASER CEW stimuli applied through transcutaneous darts which have contacted or penetrated the surface of the torso are inherently protective against cardiac events because current needs to penetrate deep within the torso to reach the heart itself, and because stimulus pulse widths needed to activate the heart are longer in duration than those needed to stimulate skeletal muscle or nerve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    * James D. Sweeney reports serving as a member of the Scientific and Medical Advisory Board of TASER International, Inc. No other potential conflict of interest relevant to this chapter was reported.

References

  1. Lake, D.A., Neuromuscular electrical stimulation. An overview and its application in the treatment of sports injuries. Sports Med, 1992. 13(5): pp. 320–36.

    Article  PubMed  CAS  Google Scholar 

  2. Rushton, D.N., Electrical stimulation in the treatment of pain. Disability & Rehabilitation, 2002. 24(8): pp. 407–15.

    Article  Google Scholar 

  3. Rattay, F., Analysis of models for extracellular fiber stimulation. IEEE Trans Biomed Eng, 1989. 36(7): pp. 676–82.

    Article  PubMed  CAS  Google Scholar 

  4. Reilly, J.P., Applied bioelectricity: from electrical stimulation to electrical pathology. 1998, New York: Springer. 1–563.

    Google Scholar 

  5. Weiss, G., Sur la possibilite' de rendre comparable entre eux les appareils survant a l'excitation electrique. Arch Ital de Biol, 1901. 35: pp. 413–46.

    Google Scholar 

  6. Li, C.L. and A. Bak, Excitability characteristics of the A- and C-fibers in a peripheral nerve. Exp Neurol, 1976. 50(1): pp. 67–79.

    Article  PubMed  CAS  Google Scholar 

  7. Koslow, M., A. Bak, and C.L. Li, C-fiber excitability in the cat. Exp Neurol, 1973. 41(3): pp. 745–53.

    Article  PubMed  CAS  Google Scholar 

  8. McIntyre, C.C., A.G. Richardson, and W.M. Grill, Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle. J Neurophysiol, 2002. 87(2): pp. 995–1006.

    PubMed  Google Scholar 

  9. Carnevale, N.T. and M.L. Hines, The NEURON book. 2006, Cambridge; New York: Cambridge University Press. xix, 457p.

    Book  Google Scholar 

  10. Monti, R.J., R.R. Roy, and V.R. Edgerton, Role of motor unit structure in defining function. Muscle & Nerve, 2001. 24(7): pp. 848–66.

    Article  Google Scholar 

  11. Burke, R.E., Firing patterns of gastrocnemius motor units in the decerebrate cat. J Physiol, 1968. 196(3): pp. 631–54.

    PubMed  CAS  Google Scholar 

  12. McPhedran, A.M., R.B. Wuerker, and E. Henneman, Properties of motor units in a heterogeneous pale muscle (M. Gastrocnemius) of the cat. J Neurophysiol, 1965. 28: pp. 85–99.

    PubMed  CAS  Google Scholar 

  13. Johnson, M.A., J. Polfar, D. Weightman, and D. Appleton, Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J Neurol Sci, 1973. 18(1): pp. 111–29.

    Article  PubMed  CAS  Google Scholar 

  14. Enoka, R.M., Morphological features and activation patterns of motor units. J Clin Neurophysiol, 1995. 12(6): pp. 538–59.

    Article  PubMed  CAS  Google Scholar 

  15. Monster, A.W. and H. Chan, Isometric force production by motor units of extensor digitorum communis muscle in man. J Neurophysiol, 1977. 40(6): pp. 1432–43.

    PubMed  CAS  Google Scholar 

  16. Ding, J., A.S. Wexler, and S.A. Binder-Macleod, A mathematical model that predicts the force-frequency relationship of human skeletal muscle. Muscle Nerve, 2002. 26(4): pp. 477–85.

    Article  PubMed  Google Scholar 

  17. Ding, J., A.S. Wexler, and S.A. Binder-Macleod, A predictive fatigue model-I: Predicting the effect of stimulation frequency and pattern on fatigue. IEEE Trans Neural Syst Rehabil Eng, 2002. 10(1): pp. 48–58.

    Article  PubMed  Google Scholar 

  18. Ding, J., A.S. Wexler, and S.A. Binder-Macleod, Development of a mathematical model that predicts optimal muscle activation patterns by using brief trains. J Appl Physiol, 2000. 88(3): pp. 917–25.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James D. Sweeney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sweeney, J.D. (2009). Transcutaneous Muscle Stimulation. In: Ho, J., Kroll, M. (eds) TASER® Conducted Electrical Weapons: Physiology, Pathology, and Law. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-85475-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-85475-5_5

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-85474-8

  • Online ISBN: 978-0-387-85475-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics