Skip to main content

Advanced Methods for Assessing the Stability and Control of Alternans

  • Chapter
Cardiac Bioelectric Therapy

It is now widely accepted that rotating action potential waves propagating within the heart cause several types of abnormal rapid cardiac rhythm patterns. Many of these rotating waves are sustained purely through the electrical dynamics of the cardiac tissue, without the benefit of a clear anatomical obstacle around which to rotate, a phenomenon known as functional reentry. There have been several types of functional reentry described as possible causes of rapid cardiac rhythm, including leading circle reentry,1 spiral wave reentry,32 anisotropic reentry,8 and figure-of-eight reentry.10

The onset of ventricular fibrillation (VF) may well be linked to factors that tend to break up these functionally reentrant waves into additional waves. One major theory suggests that a strong dependence of the action potential duration (APD) on the preceding diastolic interval (DI),18 a phenomenon called steep electrical restitution, is closely correlated with the tendency for a reentrant wave to experience breakup.38 In this theory, the steep restitution creates alternans, the beat-to-beat alternation of action potential parameters such as the APD or DI. When alternans is present during spiral wave rotation, the DI out in front of the rotating wave can become very short during every other rotation. As illustrated in Fig. 1, this short DI can cause a portion of the wave to block, allowing remaining segments of the wave to form additional spiral waves. The first studies of alternans on reentrant action potential waves took place in one-dimensional ring geometry.7,14,24 This system exhibited a variation of alternans behavior called the oscillating pulse instability, which was found to be caused by an interaction between the dynamics associated with electrical restitution and variations in the conduction velocity, which was also assumed to depend on DI. Such was also the case when alternans was studied in finite length fibers subjected to rapid pacing.13 In this case, in both simulation and Purkinje fiber experiments, constant rapid pacing applied to one end of the fiber resulted in alternans behavior that was either in phase throughout the system (concordant alternans) or arranged into regions that were out of phase with one another (discordant alternans). The latter were often seen to lead subsequently to block of some of the propagating action potentials. A hypothesis was subsequently put forward that the presence of discordant alternans leaves the tissue open to the block of segments of propagating wavefronts, leading to the formation of reentrant waves, subsequent block of those waves, electrical turbulence, and finally self-sustaining rapid cardiac rhythm. Substantial evidence for this theory exists; for example, it has been shown that the induction of VF can be prevented or converted into a periodic rhythm when drugs that flatten the restitution function are administered.16,35 Pastore et al.31 have also observed that discordant alternans degenerates into VF upon slight acceleration of the pacing frequency in guinea pig ventricular muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allessie MA, Bonke FIM, Schopman FJG. Circus movement in rabbit atrial muscle as a mechanism of tachycardia, III. The “leading circle” concept: a new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle. Circ Res. 1977;41:9–18

    PubMed  CAS  Google Scholar 

  2. Allexandre D, Otani NF. Preventing alternans-induced spiral wave breakup in cardiac tissue: An ion-channel-based approach. Phys Rev E 2004;70:061903

    Article  CAS  Google Scholar 

  3. Barkley D. Linear stability analysis of rotating spiral waves in excitable media. Phys Rev Lett 1992;68(13):2090–2093

    Article  PubMed  Google Scholar 

  4. Beeler GW, Reuter H. Reconstruction of the action potential of ventricular myocardial fibres. J Physiol 1977;268(1):177–210

    PubMed  CAS  Google Scholar 

  5. Christini DJ, Stein KM, Markowitz SM, Mittal S, Slotwiner DJ, Scheiner MA, Iwai S, Lerman BB. Nonlinear-dynamical arrhythmia control in humans. Proc Natl Acad Sci USA 2001;98(10):5827–5832

    Article  PubMed  CAS  Google Scholar 

  6. Christini DJ, Riccio ML, Culianu CA, Fox JJ, Karma A, Gilmour RF Jr. Control of electrical alternans in canine cardiac Purkinje fibers. Phys Ref Lett 2006;96:104101

    Article  Google Scholar 

  7. Courtemanche M, Glass L, Keener JP. Instabilities of a propagating pulse in a ring of excitable media. Phys Rev Lett 1993;70(14):2182–2185

    Article  PubMed  Google Scholar 

  8. Dillon SM, Allessie MA, Ursell PC, Wit AL. Influences of anisotropic tissue structure on reentrant circuits in the epicardial border zone of subacute canine infarcts. Circ Res 1988;63:182–206

    PubMed  CAS  Google Scholar 

  9. Echebarria B, Karma A. Spatiotemporal control of cardiac alternans. Chaos 2002;12(3):923–930

    Article  PubMed  Google Scholar 

  10. El-Sherif N. Reentrant mechanisms in ventricular arrhythmias. In: Zipes DP, Jalife J, eds. Cardiac Electrophysiology: From Cell to Bedside, 2nd edn. Philadelphia: W.B. Saunders; 1995:567–582

    Google Scholar 

  11. Fenton F, Karma A. Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: filament instability and fibrillation. Chaos 1998;8(1):20–47

    Article  PubMed  Google Scholar 

  12. Fox JJ, McHarg JL, Gilmour RF Jr. Ionic mechanism of electrical alternans. Am J Physiol Heart Circ Physiol 2002;282(2):H516–H530

    PubMed  CAS  Google Scholar 

  13. Fox JJ, Riccio ML, Hua F, Bodenschatz E, Gilmour RF Jr. Spatiotemporal transition to conduction block in canine ventricle. Circ Res 2002;90(3):289–296

    Article  PubMed  CAS  Google Scholar 

  14. Frame LH, Simson MB. Oscillations of conduction, action potential duration, and refractoriness: a mechanism for spontaneous termination of reentrant tachycardias. Circulation 1988;78:1277–1287

    PubMed  CAS  Google Scholar 

  15. Garfinkel A, Spano ML, Ditto WL, Weiss JN. Controlling cardiac chaos. Science 1992;257:1230–1235

    Article  PubMed  CAS  Google Scholar 

  16. Garfinkel A, Kim YH, Voroshilovsky O, Qu ZL, Kil JR, Lee MH, Karagueuzian HS, Weiss JN, Chen PS. Preventing ventricular fibrillation by flattening cardiac restitution. Proc Natl Acad Sci USA 2000;97(11):6061–6066

    Article  PubMed  CAS  Google Scholar 

  17. Gilmour RF Jr, Otani NF, Watanabe M. Memory and complex dynamics in cardiac Purkinje fibers. Am J Physiol 1997;272:H1826–H1832

    PubMed  CAS  Google Scholar 

  18. Guevara MR, Ward G, Shrier A, Glass L. Electrical alternans and period-doubling bifurcations. IEEE Comput Cardiol 1984;167–170

    Google Scholar 

  19. Hall GM, Gauthier DJ. Experimental control of cardiac muscle alternans. Phys Rev Lett 2002;88(19):198102

    Article  PubMed  Google Scholar 

  20. Hall K, Christini DJ, Tremblay M, Collins JJ, Glass L, Billette J. Dynamic control of cardiac alternans. Phys Rev Lett 1997;78(23):4518–4521

    Article  CAS  Google Scholar 

  21. Henry H, Hakim V. Scroll waves in isotropic excitable media: linear instabilities, bifurcations, and restabilized states. Phys Rev E 2002;65(4):046235

    Article  Google Scholar 

  22. Hua F, Gilmour RF Jr. Contribution of I Kr to rate-dependent action potential dynamics in canine endocardium. Circ Res 2004;94:810–819

    Article  PubMed  CAS  Google Scholar 

  23. Hund T, Rudy Y. Rate dependence and regulation of action potential and calcium transient in a canine cardiac ventricular cell model. Circulation 2004;110(20):3168–3174

    Article  PubMed  CAS  Google Scholar 

  24. Karma A, Levine H, Zou X. Theory of pulse instabilities in electrophysiological models of excitable tissues. Physica D 1994;73:113–127

    Article  Google Scholar 

  25. Li M, Otani NF. Ion channel basis for alternans and memory in cardiac myocytes. Ann Biomed Eng 2003;31(10):1213–1230

    Article  PubMed  Google Scholar 

  26. Li M, Otani NF. Controlling alternans in cardiac cells. Ann Biomed Eng 2004;32(6):784– 792

    Article  PubMed  Google Scholar 

  27. Li M, Gilmour RF, Riccio ML, Otani NF. Controlling alternans in cardiac cells. Comput Cardiol 2003;30:9–12

    Article  Google Scholar 

  28. Luo C-H, Rudy Y. A dynamic model of the cardiac ventricular action potential I. Simulations of ionic currents and concentration changes. Circ Res 1994;74:1071–1096

    PubMed  CAS  Google Scholar 

  29. Otani NF, Gilmour RF Jr. Memory models for the electrical properties of local cardiac systems. J Theor Biol 1997;187(3):409–436

    Article  PubMed  CAS  Google Scholar 

  30. Otani NF, Li M, Gilmour RF Jr. What can nonlinear dynamics teach us about the development of ventricular tachycardia/ventricular fibrillation? Heart Rhythm 2005;2:1261– 1263

    Article  PubMed  Google Scholar 

  31. Pastore JM, Girouard SD, Laurita KR, Akar FG, Rosenbaum DS. Mechanism linking t-wave alternans to the genesis of cardiac fibrillation. Circulation 1999;99(10):1385–1394

    PubMed  CAS  Google Scholar 

  32. Pertsov AM, Davidenko JM, Salomonsz R, Baxter WT, Jalife J. Spiral waves of excitation underlie reentrant activity in isolated cardiac muscle. Circ Res 1993;72(3):631–650

    PubMed  CAS  Google Scholar 

  33. Pruvot EJ, Katra RP, Rosenbaum DS, Laurita KR. Role of calcium cycling versus restitution in the mechanism of repolarization alternans. Circ Res 2004;94(8):1083–1090

    Article  PubMed  CAS  Google Scholar 

  34. Rappel W-J, Fenton F, Karma A. Spatiotemporal control of wave instabilities in cardiac tissue. Phys Rev Lett 1999;83(2):456–459

    Article  CAS  Google Scholar 

  35. Riccio ML, Koller ML, Gilmour RF Jr. Electrical restitution and spatiotemporal organization during ventricular fibrillation. Circ Res 1999;84(8):955–963

    PubMed  CAS  Google Scholar 

  36. Tolkacheva EG, Romeo MM, Guerraty M, Gauthier DJ. Condition for alternans and its control in a two-dimensional mapping model of paced cardiac dynamics. Phys Rev E 2004;69:031904

    Article  Google Scholar 

  37. Watanabe M, Gilmour RF Jr. Strategy for control of complex low-dimensional dynamics in cardiac tissue. J Math Biol 1996;35(1):73–87

    Article  PubMed  CAS  Google Scholar 

  38. Weiss JN, Garfinkel A, Karagueuzian HS, Qu ZL, Chen PS. Chaos and the transition to ventricular fibrillation — a new approach to antiarrhythmic drug evaluation. Circulation 1999;99(21):2819–2826

    PubMed  CAS  Google Scholar 

  39. Zeng J, Laurita KR, Rosenbaum DS, Rudy Y. Two components of the delayed rectifier K+ current in ventricular myocytes of the guinea pig type, theoretical formulation and their role in repolarization. Circ Res 1995;77:140–152

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC.

About this chapter

Cite this chapter

Otani, N.F., Allexandre, D., Li, M. (2009). Advanced Methods for Assessing the Stability and Control of Alternans. In: Efimov, I.R., Kroll, M.W., Tchou, P.J. (eds) Cardiac Bioelectric Therapy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-79403-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-79403-7_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-79402-0

  • Online ISBN: 978-0-387-79403-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics