Skip to main content

Targeting Classical Complement Pathway to Treat Complement Mediated Autoimmune Diseases

  • Chapter
  • First Online:
Current Topics in Complement II

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 632))

Abstract

Mice deficient for classical complement pathway (CCP) factor C4 are resistant to antibody and complement mediated experimental autoimmune myasthenia gravis (EAMG). Anti-C1q antibody administration before or following acetylcholine receptor immunization suppresses EAMG development by reducing lymph node cell IL-6 production and neuromuscular junction IgG, C3 and C5b-C9 deposition. This effect is achieved by treating mice with 10 µg of anti-C1q antibody, twice weekly for 4 weeks. Treatment with a higher amount of anti-C1q antibody gives rise to increased serum anti-acetylcholine receptor antibody, immune complex and C3 levels, facilitates kidney C3 and IgG deposits and thus reduces the treatment efficacy. C4 KO and anti-C1q antibody treated mice display normal immune system functions and intact antibody production capacity. Furthermore, CCP inhibition preserves alternative complement pathway activation, which is required for host defense against microorganisms. Therefore, CCP inhibition might constitute a specific treatment approach for not only myasthenia gravis but also other complement mediated autoimmune diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Biesecker, G. and Gomez, C.M. (1989) Inhibition of acute passive transfer experimental autoimmune myasthenia gravis with Fab antibody to complement C6. J. Immunol. 142, 2654–2659

    PubMed  CAS  Google Scholar 

  • Carroll, M. (1999) Negative selection of self-reactive B lymphocytes involves complement. Curr. Top. Microbiol. Immunol. 246, 21–27

    Article  PubMed  CAS  Google Scholar 

  • Christadoss, P. (1988) C5 gene influences the development of murine myasthenia gravis. J. Immunol.140, 2589–2592

    PubMed  CAS  Google Scholar 

  • Christadoss, P., Kaul, R., Shenoy, M. and Goluszko, E. (1995) Establishment of a mouse model of myasthenia gravis which mimics human myasthenia gravis pathogenesis for immune intervention. Adv. Exp. Med. Biol. 383, 195–199

    Article  PubMed  CAS  Google Scholar 

  • De Serres, J., Groner, A. and Lindner, J. (2003) Safety and efficacy of pasteurized C1 inhibitor concentrate (Berinert P) in hereditary angioedema: a review. Transfus. Apher. Sci. 29, 247–254

    Article  PubMed  Google Scholar 

  • De Simoni, M.G., Storini, C., Barba, M., Catapano, L., Arabia, A.M., Rossi, E. and Bergamaschini L. (2003) Neuroprotection by complement (C1) inhibitor in mouse transient brain ischemia. J. Cereb. Blood Flow. Metab. 23, 232–239

    Article  PubMed  CAS  Google Scholar 

  • Deng, C., Goluszko, E., Tuzun, E., Yang, H. and Christadoss, P. (2002) Resistance to experimental autoimmune myasthenia gravis in IL-6-deficient mice is associated with reduced germinal center formation and C3 production. J. Immunol. 169, 1077–1083

    PubMed  CAS  Google Scholar 

  • Dickneite, G. (1993) Influence of C1-inhibitor on inflammation, edema and shock. Behring Inst. Mitt. 93, 299–305

    PubMed  CAS  Google Scholar 

  • Engel, A.G. and Fumagalli, G. (1982) Mechanisms of acetylcholine receptor loss from the neuromuscular junction. Ciba Found. Symp. 90, 197–224

    PubMed  CAS  Google Scholar 

  • Engel, A.G., Lambert, E.H. and Howard, F.M. (1977) Immune complexes (IgG and C3) at the motor end-plate in myasthenia gravis: ultrastructural and light microscopic localization and electrophysiologic correlations. Mayo Clin. Proc. 52, 267–280

    PubMed  CAS  Google Scholar 

  • Engel, A.G., Sakakibara, H., Sahashi, K., Lindstrom, J.M., Lambert, E.H. and Lennon, V.A. (1979) Passively transferred experimental autoimmune myasthenia gravis. Sequential and quantitative study of the motor end-plate fine structure and ultrastructural localization of immune complexes (IgG and C3), and of the acetylcholine receptor. Neurology 29, 179–188

    PubMed  CAS  Google Scholar 

  • Engel, A.G., Sahashi, K. and Fumagalli, G. (1981) The immunopathology of acquired myasthenia gravis. Ann. N. Y. Acad. Sci. 377, 158–174

    Article  PubMed  CAS  Google Scholar 

  • Graus, Y.M., Verschuuren, J.J., Spaans, F., Jennekens, F., van Breda Vriesman, P.J. and De Baets, M.H. (1993) Age-related resistance to experimental autoimmune myasthenia gravis in rats. J. Immunol. 150, 4093–4103

    PubMed  CAS  Google Scholar 

  • Henze, U., Lennartz, A., Hafemann, B., Goldmann, C., Kirkpatrick, C.J. and Klosterhalfen, B. (1997) The influence of the C1-inhibitor BERINERT and the protein-free haemodialysate ACTIHAEMYL20% on the evolution of the depth of scald burns in a porcine model. Burns 23, 473–477

    Article  PubMed  CAS  Google Scholar 

  • Howard, F.M. Jr., Lennon, V.A., Finley, J., Matsumoto, J. and Elveback, L.R. (1987) Clinical correlations of antibodies that bind, block, or modulate human acetylcholine receptors in myasthenia gravis. Ann. N. Y. Acad. Sci. 505, 526–538

    Article  PubMed  Google Scholar 

  • Kamolvarin, N., Hemachudha, T., Ongpipattanakul, B., Phanthumchinda, K. and Sueblinvong, T. (1991) Plasma C3c in immune-mediated neurological diseases: a preliminary report. Acta. Neurol. Scand. 83, 382–387

    Article  PubMed  CAS  Google Scholar 

  • Karachunski, P.I., Ostlie, N.S., Monfardini, C. and Conti-Fine, B.M. (2000) Absence of IFN-gamma or IL-12 has different effects on experimental myasthenia gravis in C57BL/6 mice. J. Immunol. 164, 5236–5244

    PubMed  CAS  Google Scholar 

  • Lennon, V.A., Seybold, M.E., Lindstrom, J.M., Cochrane, C. and Ulevitch, R. (1978) Role of complement in the pathogenesis of experimental autoimmune myasthenia gravis. J. Exp. Med. 147, 973–983

    Article  PubMed  CAS  Google Scholar 

  • Poussin, M.A., Goluszko, E., Franco, J.U. and Christadoss P. (2002) Role of IL-5 during primary and secondary immune response to acetylcholine receptor. J. Neuroimmunol. 125, 51–58

    Article  PubMed  CAS  Google Scholar 

  • Romi, F., Kristoffersen, E.K., Aarli, J.A. and Gilhus, N.E. (2005) The role of complement in myasthenia gravis: serological evidence of complement consumption in vivo. J. Neuroimmunol. 158, 191–194

    Article  PubMed  CAS  Google Scholar 

  • Sahashi, K., Engel, A.G., Lambert, E.H. and Howard, F.M. Jr. (1980) Ultrastructural localization of the terminal and lytic ninth complement component (C9) at the motor end-plate in myasthenia gravis. J. Neuropathol. Exp. Neurol. 39, 160–172

    Article  PubMed  CAS  Google Scholar 

  • Scott, B.G., Yang, H., Tuzun, E., Dong, C., Flavell, R.A. and Christadoss, P. (2004) ICOS is essential for the development of experimental autoimmune myasthenia gravis. J. Neuroimmunol. 153, 16–25

    Article  PubMed  CAS  Google Scholar 

  • Tuzun, E. and Christadoss, P. (2006) Unraveling myasthenia gravis immunopathogenesis using animal models. Drug Discov Today Dis Models 3, 15–20

    Article  Google Scholar 

  • Tuzun, E., Scott, B.G., Goluszko, E., Higgs, S. and Christadoss, P. (2003) Genetic evidence for involvement of classical complement pathway in induction of experimental autoimmune myasthenia gravis. J. Immunol. 171, 3847–3854

    PubMed  Google Scholar 

  • Tuzun, E., Saini, S.S., Ghosh, S., Rowin, J., Meriggioli, M.N. and Christadoss, P. (2006a) Predictive value of serum anti-C1q antibody levels in experimental autoimmune myasthenia gravis. Neuromuscul. Disord. 16, 137–143

    Article  Google Scholar 

  • Tuzun, E., Saini, S.S., Yang, H., Alagappan, D., Higgs, S. and Christadoss, P. (2006b) Genetic evidence for the involvement of Fcgamma receptor III in experimental autoimmune myasthenia gravis pathogenesis. J. Neuroimmunol. 174, 157–167

    Article  Google Scholar 

  • Tuzun, E., Li, J., Saini, S.S., Yang, H. and Christadoss, P. (2007) Pros and cons of treating murine myasthenia gravis with anti-C1q antibody. J. Neuroimmunol. 182, 167–176

    Article  PubMed  Google Scholar 

  • Vincent, A. (2006) Immunology of disorders of neuromuscular transmission. Acta Neurol. Scand. Suppl. 183, 1–7

    Article  PubMed  CAS  Google Scholar 

  • Yang, H., Tuzun, E., Alagappan, D., Yu, X., Scott, B.G., Ischenko, A. and Christadoss, P. (2005) IL-1 receptor antagonist-mediated therapeutic effect in murine myasthenia gravis is associated with suppressed serum proinflammatory cytokines, C3, and anti-acetylcholine receptor IgG1. J. Immunol. 175, 2018–2025

    PubMed  CAS  Google Scholar 

  • Zeerleder, S., Caliezi, C., van Mierlo, G., Eerenberg-Belmer, A., Sulzer, I., Hack, C.E. and Wuillemin, W.A. (2003) Administration of C1 inhibitor reduces neutrophil activation in patients with sepsis. Clin. Diagn. Lab. Immunol. 10, 529–535

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Erdem Tüzün , Jing Li , Shamsher S. Saini , Huan Yang or Premkumar Christadoss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tüzün, E., Li, J., Saini, S., Yang, H., Christadoss, P. (2008). Targeting Classical Complement Pathway to Treat Complement Mediated Autoimmune Diseases. In: Lambris, J. (eds) Current Topics in Complement II. Advances in Experimental Medicine and Biology, vol 632. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78952-1_19

Download citation

Publish with us

Policies and ethics