Skip to main content

Neuronal Processing of Chemical Information in Crustaceans

  • Chapter
  • First Online:
Chemical Communication in Crustaceans

Abstract

Most crustaceans live in aquatic environments and chemoreception is their dominant sensory modality. Crustacean chemoreception is mediated by small cuticular sense organs (sensilla) occurring on all body parts, with the antennules (first antennae), second antennae, legs, and mouthparts representing the major chemosensory organs. Chemoreceptive sensilla of crustaceans are divided into bimodal sensilla which comprise a few mechano- and some chemoreceptor neurons and occur on all appendages and aesthetascs which are innervated by 40–500 olfactory receptor neurons and exclusively occur on the antennular outer flagellum. Olfactory receptor neurons differ from chemoreceptor neurons of bimodal sensilla in having spontaneous activity, inhibitory responses, and autonomous bursting, but both types of receptor neurons mainly respond to small water-soluble molecules such as amino acids. The dichotomy in sensilla structure is reflected in the organization of the associated CNS pathways. Olfactory receptor neurons selectively innervate a synaptic region in the midbrain, the olfactory lobe, which is organized into dense substructures called glomeruli. As is typical of the first synaptic relay in the central olfactory pathway across metazoans, olfactory information processing in glomeruli is based on multiple types of inhibitory local interneurons and on projection neurons ascending to higher brain areas. Receptor neurons from bimodal sensilla target synaptic areas that are distributed throughout the brain and ventral nerve cord and contain arborizations of motoneurons innervating muscles of the segmental appendages that provide the chemo- and mechanosensory input. Based on the matching dichotomy of sensilla construction and of sensory pathway organization, we propose that crustacean chemoreception is differentiated into two fundamentally different modes: “olfaction” – chemoreception mediated by the aesthetasc–olfactory lobe pathway, and “distributed chemoreception” – chemoreception mediated by bimodal sensilla on all appendages and the associated synaptic areas serving as local motor centers. In decapod crustaceans, pheromone detection and processing of pheromone information are not mediated by dedicated sensilla and CNS pathways, respectively, but seem to be integral components of olfaction and distributed chemoreception. Aesthetascs mediate responses to distant pheromones, whereas bimodal sensilla located on the appendages touching the conspecific partner are likely responsible for the detection of contact pheromones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AL:

Accessory lobe

CNS:

Central nervous system

CRN:

Chemoreceptor neuron

dCRN:

“Distributed” chemoreceptor neuron of bimodal sensillum

DC:

Deutocerebral commissure

DCN:

Deutocerebral commissural neuropil

LAN:

Lateral antennular neuropil

LN:

Local interneuron

MAN:

Median antennular neuropil

MRN:

Mechanoreceptor neuron

OGT:

Olfactory globular tract

OGTN:

Olfactory globular tract neuropil

OL:

Olfactory lobe

ORN:

Olfactory receptor neuron (CRN of aesthetasc)

PN:

Projection neuron

References

  • Ache BW, Sandeman DC (1980) Olfactory-induced central neural activity in the murray crayfish, Euastacus armatus. J Comp Physiol 140:295–301

    Article  Google Scholar 

  • Altner I, Hatt H, Altner H (1983) Structural properties of bimodal chemo- and mechanosensitive setae on the pereiopod chelae of the crayfish, Austropotamobius torrentium. Cell Tissue Res 228:357–374

    Article  PubMed  CAS  Google Scholar 

  • Anderson PAV, Ache BW (1985) Voltage- and current-clamp recordings of the receptor potential in olfactory receptor cells in situ. Brain Res 338:273–280

    Article  PubMed  CAS  Google Scholar 

  • Arbas EA, Humphreys CJ, Ache BW (1988) Morphology and physiological properties of interneurons in the olfactory midbrain of the crayfish. J Comp Physiol A 164:231–241

    Article  PubMed  CAS  Google Scholar 

  • Atema J (1980) Smelling and tasting underwater. Oceanus 23:4–18

    Google Scholar 

  • Belanger RM, Moore PA (2006) The use of the major chelae by reproductive male crayfish (Orconectes rusticus) for discrimination of female odours. Behaviour 143:713–731

    Article  Google Scholar 

  • Beltz BS, Tlusty MF, Benton JL, Sandeman DC (2007) Omega-3 fatty acids upregulate adult neurogenesis. Neurosci Lett 415:154–158

    Article  PubMed  CAS  Google Scholar 

  • Bobkov YV, Ache BW (2007) Intrinsically bursting olfactory receptor neurons. J Neurophysiol 97:1052–1057

    Article  PubMed  CAS  Google Scholar 

  • Brock F (1926) Das Verhalten des Einsiedlerkrebses Pagurus arrosor Herbst während der Suche und Aufnahme der Nahrung. Beitrag zu einer Umweltanalyse. Z Morph Ökol Tiere 6:415–552

    Article  Google Scholar 

  • Caprio J, Derby CD (2008) Aquatic animal models in the study of chemoreception. In: Firestein S, Beauchamp GK (eds) The senses: a comprehensive reference, vol 4, Olfaction & Taste. Academic Press, San Diego, pp 97–133

    Chapter  Google Scholar 

  • Carr WES, Gleeson RA, Ache BW, Milstead ML (1986) Olfactory receptors of the spiny lobster:ATP-sensitive cells with similarities to P2-type purinoceptors of vertebrates. J Comp Physiol A 158:331–338

    Article  CAS  Google Scholar 

  • Cate HS, Derby CD (2001) Morphology and distribution of setae on the antennules of the Caribbean spiny lobster Panulirus argus reveal new types of bimodal chemo-mechanosensilla. Cell Tissue Res 304:439–454

    Article  PubMed  CAS  Google Scholar 

  • Cate HS, Derby CD (2002) Ultrastructure and physiology of the hooded sensillum, a bimodal chemo-mechanosensillum of lobsters. J Comp Neurol 442:293–307

    Article  PubMed  Google Scholar 

  • Corotto F, Voigt R, Atema J (1992) Spectral tuning of chemoreceptor cells of the third maxilliped of the lobster, Homarus americanus. Biol Bull 183:456–462

    Article  Google Scholar 

  • Derby CD (1982) Structure and function of cuticular sensilla of the lobster Homarus americanus. J Crust Biol 2:1–21

    Article  Google Scholar 

  • Derby CD, Atema J (1982a) Chemosensitivity of walking legs of the lobster Homarus americanus: neurophysiological response spectrum and thresholds. J Exp Biol 98:303–315

    CAS  Google Scholar 

  • Derby CD, Atema J (1982b) Narrow-spectrum chemoreceptor cells in the walking legs of the lobster Homarus americanus: taste specialists. J Comp Physiol A 146:181–189

    Article  CAS  Google Scholar 

  • Garm A, Hoeg JT (2006) Ultrastructure and functional organization of mouthpart sensory setae of the spiny lobster Panulirus argus: new features of putative mechanoreceptors. J Morphol 267:464–476

    Article  PubMed  Google Scholar 

  • Garm A, Shabani S, Hoeg JT, Derby CD (2005) Chemosensory neurons in the mouthparts of the spiny lobsters Panulirus argus and Panulirus interruptus (Crustacea: Decapoda). J Exp Mar Biol Ecol 314:175–186

    Article  Google Scholar 

  • Goergen EM, Bagay LA, Rehm K, Benton JL, Beltz BS (2002) Circadian control of neurogenesis. J Neurobiol 53:90–95

    Article  PubMed  Google Scholar 

  • Grünert U, Ache BW (1988) Ultrastructure of the aesthetasc (olfactory) sensilla of the spiny lobster, Panulirus argus. Cell Tissue Res 251:95–103

    Article  Google Scholar 

  • Hatt H, Bauer U (1982) Electrophysiological properties of pyridine receptors in the crayfish walking leg. J Comp Physiol A 148:221–224

    Article  CAS  Google Scholar 

  • Hindley JPR (1975) The detection, localization and recognition of food by juvenile banana prawns, Penaeus merguiensis de Man. Mar Behav Physiol 3:193–210

    Article  Google Scholar 

  • Horner AJ, Weissburg MJ, Derby CD (2004) Dual antennular pathways can mediate orientation by Caribbean spiny lobsters in naturalistic flow conditions. J Exp Biol 207:3785–3796

    Article  PubMed  Google Scholar 

  • Kamiguchi Y (1972) Mating behavior in the freshwater prawn, Palaemon paucidens. A study of the sex pheromone and its effects on males. J Fac Sci Hokkaido Univ Ser VI Zool 18:347–355

    Google Scholar 

  • Kamio M, Matsunaga S, Fusetani N (2002) Copulation pheromone in the crab Telmessus cheiragonus (Brachyura: Decapoda). Mar Ecol Prog Ser 234:183–190

    Article  Google Scholar 

  • Laverack MS (1968) On the receptors of marine invertebrates. Oceanogr Mar Biol Annu Rev 6:249–324

    Google Scholar 

  • Laverack MS (1988) The diversity of chemoreceptors. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 287–312

    Google Scholar 

  • McKinzie ME, Benton JL, Beltz BS, Mellon D (2003) Parasol cells in the hemiellipsoid body of the crayfish Procambarus clarkii: dendritic branching patterns and functional implications. J Comp Neurol 462:168–179

    Article  PubMed  Google Scholar 

  • Mellon D (2000) Convergence of multimodal sensory input onto higher-level neurons of the crayfish olfactory pathway. J Neurophysiol 84:3043–3055

    PubMed  Google Scholar 

  • Mellon D (2005) Integration of hydrodynamic and odorant inputs by local interneurons of the crayfish deutocerebrum. J Exp Biol 208:3711–3720

    Article  PubMed  Google Scholar 

  • Mellon D, Alones V (1993) Cellular organization and growth-related plasticity of the crayfish olfactory midbrain. Microsc Res Tech 24:231–259

    Article  PubMed  Google Scholar 

  • Mellon D, Alones V (1995) Identification of three classes of multiglomerular, broad- spectrum neurons in the crayfish olfactory midbrain by correlated patterns of electrical activity and dendritic arborization. J Comp Physiol A 177:55–71

    Article  Google Scholar 

  • Mellon D, Alones VE (1997) Response properties of higher level neurons in the central olfactory pathway of the crayfish. J Comp Physiol A 181:205–216

    Article  Google Scholar 

  • Mellon D, Humphrey JAC (2007) Directional asymmetry in responses of local interneurons in the crayfish deutocerebrum to hydrodynamic stimulation of the lateral antennular flagellum. J Exp Biol 210:2961–2968

    Article  PubMed  Google Scholar 

  • Mellon D, Munger SD (1990) Nontopographic projection of olfactory sensory neurons in the crayfish brain. J Comp Neurol 296:253–262

    Article  PubMed  Google Scholar 

  • Mellon D, Wheeler CJ (1999) Coherent oscillations in membrane potential synchronize impulse bursts in central olfactory neurons of the crayfish. J Neurophysiol 81:1231–1241

    PubMed  Google Scholar 

  • Mellon D, Tuten HR, Redick J (1989) Distribution of radioactive leucine following uptake by olfactory sensory neurons in normal and heteromorphic crayfish antennules. J Comp Neurol 280:645–662

    Article  PubMed  Google Scholar 

  • Mellon D, Alones V, Lawrence MD (1992) Anatomy and fine structure of neurons in the deutocerebral projection pathway of the crayfish olfactory system. J Comp Neurol 321:93–111

    Article  PubMed  Google Scholar 

  • Michel WC, McClintock TS, Ache BW (1991) Inhibition of lobster olfactory receptor cells by an odor- activated potassium conductance. J Neurophysiol 65:446–453

    PubMed  CAS  Google Scholar 

  • Michel WC, Trapido-Rosenthal HG, Chao ET, Wachowiak M (1993) Stereoselective detection of amino acids by lobster olfactory receptor neurons. J Comp Physiol A 171:705–712

    Article  PubMed  CAS  Google Scholar 

  • Munger SD, Leinders-Zufall T, Zufall F (2009) Subsystem organization of the mammalian sense of smell. Annu Rev Physiol 71:115–140

    Article  PubMed  CAS  Google Scholar 

  • Sandeman DC, Denburg JL (1976) The central projections of chemoreceptor axons in the crayfish revealed by axoplasmic transport. Brain Res 115:492–496

    Article  PubMed  CAS  Google Scholar 

  • Sandeman D, Mellon D (2002) Olfactory centers in the brain of freshwater crayfish. In: Wiese K (ed) The crustacean nervous system. Springer, Berlin, pp 386–404

    Google Scholar 

  • Sandeman DC, Sandeman RE (1994) Electrical responses and synaptic connections of giant serotonin- immunoreactive neurons in crayfish olfactory and accessory lobes. J Comp Neurol 341:130–144

    Article  PubMed  CAS  Google Scholar 

  • Sandeman R, Sandeman D (2000) “Impoverished” and “enriched” living conditions influence the proliferation and survival of neurons in crayfish brain. J Neurobiol 45:215–226

    Article  PubMed  CAS  Google Scholar 

  • Sandeman D, Sandeman R, Derby C, Schmidt M (1992) Morphology of the brain of crayfish, crabs, and spiny lobsters: A common nomenclature for homologous structures. Biol Bull 183:304–326

    Article  Google Scholar 

  • Sandeman D, Beltz BS, Sandeman R (1995) Crayfish brain interneurons that converge with serotonin giant cells in accessory lobe glomeruli. J Comp Neurol 352:263–279

    Article  PubMed  CAS  Google Scholar 

  • Schachtner J, Schmidt M, Homberg U (2005) Organization and evolutionary trends of primary olfactory brain centers in Tetraconata (Crustacea+Hexapoda). Arthrop Struct Dev 34:257–299

    Article  Google Scholar 

  • Schmidt M (2007) The olfactory pathway of decapod crustaceans - an invertebrate model for life-long neurogenesis. Chem Senses 32:365–384

    Article  PubMed  Google Scholar 

  • Schmidt M, Ache BW (1992) Antennular projections to the midbrain of the spiny lobster. II. Sensory innervation of the olfactory lobe. J Comp Neurol 318:291–303

    Article  PubMed  CAS  Google Scholar 

  • Schmidt M, Ache BW (1996a) Processing of antennular input in the brain of the spiny lobster, Panulirus argus. I. Non-olfactory chemosensory and mechanosensory pathway of the lateral and median antennular neuropils. J Comp Physiol A 178:579–604

    Article  Google Scholar 

  • Schmidt M, Ache BW (1996b) Processing of antennular input in the brain of the spiny lobster, Panulirus argus. II. The olfactory pathway. J Comp Physiol A 178:605–628

    Article  Google Scholar 

  • Schmidt M, Derby CD (2005) Non-olfactory chemoreceptors in asymmetric setae activate antennular grooming behavior in the Caribbean spiny lobster Panulirus argus. J Exp Biol 208:233–248

    Article  PubMed  CAS  Google Scholar 

  • Schmidt M, Gnatzy W (1984) Are the funnel-canal organs the “campaniform sensilla” of the shore crab, Carcinus maenas (Decapoda, Crustacea)? II. Ultrastructure. Cell Tissue Res 237:81–93

    Article  PubMed  CAS  Google Scholar 

  • Schmidt M, Gnatzy W (1989) Specificity and response characteristics of gustatory sensilla (funnel-canal organs) on the dactyls of the shore crab, Carcinus maenas (Crustacea, Decapoda). J Comp Physiol A 166:227–242

    Article  Google Scholar 

  • Schmidt M, Van Ekeris L, Ache BW (1992) Antennular projections to the midbrain of the spiny lobster. I. Sensory innervation of the lateral and medial antennular neuropils. J Comp Neurol 318:277–290

    Article  PubMed  CAS  Google Scholar 

  • Shabani S, Kamio M, Derby CD (2008) Spiny lobsters detect conspecific blood-borne alarm cues exclusively through olfactory sensilla. J Exp Biol 211:2600–2608

    Article  PubMed  Google Scholar 

  • Spencer M, Case JF (1984) Exogenous ecdysteroids elicit low-threshold sensory responses in spiny lobsters. J Exp Zool 229:163–166

    Article  CAS  Google Scholar 

  • Spencer M, Linberg KA (1986) Ultrastructure of aesthetasc innervation and external morphology of the lateral antennule setae of the spiny lobster Panulirus interruptus (Randall). Cell Tissue Res 245:69–80

    Article  PubMed  CAS  Google Scholar 

  • Spiegel A (1927) Über die Chemorezeption von Crangon vulgaris Fabr. Z Vergl Physiol 6:688–730

    Article  Google Scholar 

  • Steullet P, Dudar O, Flavus T, Zhou M, Derby CD (2001) Selective ablation of antennular sensilla on the caribbean spiny lobster Panulirus argus suggests that dual antennular chemosensory pathways mediate odorant activation of searching and localization of food. J Exp Biol 204:4259–4269

    PubMed  CAS  Google Scholar 

  • Steullet P, Krützfeldt DR, Hamidani G, Flavus T, Ngo V, Derby CD (2002) Dual antennular chemosensory pathways mediate odor-associative learning and odor discrimination in the Caribbean spiny lobster Panulirus argus. J Exp Biol 205:851–867

    PubMed  Google Scholar 

  • Sullivan JM, Beltz BS (2001) Neural pathways connecting the deutocerebrum and lateral protocerebrum in the brains of decapod crustaceans. J Comp Neurol 441:9–22

    Article  PubMed  CAS  Google Scholar 

  • Sullivan JM, Beltz BS (2004) Evolutionary changes in the olfactory projection neuron pathways of eumalacostracan crustaceans. J Comp Neurol 470:25–38

    Article  PubMed  Google Scholar 

  • Sullivan JM, Beltz BS (2005a) Integration and segregation of inputs to higher-order neuropils of the crayfish brain. J Comp Neurol 481:118–126

    Article  PubMed  Google Scholar 

  • Sullivan JM, Beltz BS (2005b) Newborn cells in the adult crayfish brain differentiate into distinct neuronal types. J Neurobiol 65:157–170

    Article  PubMed  Google Scholar 

  • Sullivan JM, Sandeman DC, Benton JL, Beltz BS (2007) Adult neurogenesis and cell cycle regulation in the crustacean olfactory pathway: from glial precursors to differentiated neurons. J Mol Hist 38:527–542

    Article  CAS  Google Scholar 

  • Tautz J, Müller-Tautz R (1983) Antennal neuropile in the brain of the crayfish: morphology of neurons. J Comp Neurol 218:415–425

    Article  PubMed  CAS  Google Scholar 

  • Thompson H, Ache BW (1980) Threshold determination for olfactory receptors of the spiny lobster. Mar Behav Physiol 7:249–260

    Article  Google Scholar 

  • Tierney AJ, Voigt R, Atema J (1988) Response properties of chemoreceptors from the medial antennular filament of the lobster Homarus americanus. Biol Bull 174:364–372

    Article  Google Scholar 

  • Voigt R, Atema J (1992) Tuning of chemoreceptor cells of the second antenna of the American lobster (Homarus americanus) with a comparison of four of its other chemoreceptor organs. J Comp Physiol A 171:673–683

    Article  Google Scholar 

  • Voigt R, Weinstein AM, Atema J (1997) Spectral tuning of chemoreceptor cells in the lateral antennules of the American lobster, Homarus americanus. Mar Fresh Behav Physiol 30:19–27

    Article  Google Scholar 

  • Wachowiak M, Ache BW (1994) Morphology and physiology of multiglomerular olfactory projection neurons in the spiny lobster. J Comp Physiol A 175:35–48

    Article  Google Scholar 

  • Wachowiak M, Ache BW (1998) Multiple inhibitory pathways shape odor-evoked responses in lobster olfactory projection neurons. J Comp Physiol A 182:425–434

    Article  Google Scholar 

  • Wachowiak M, Diebel CE, Ache BW (1996) Functional organization of olfactory processing in the accessory lobe of the spiny lobster. J Comp Physiol A 178:211–226

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schmidt, M., Mellon, D. (2010). Neuronal Processing of Chemical Information in Crustaceans. In: Breithaupt, T., Thiel, M. (eds) Chemical Communication in Crustaceans. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77101-4_7

Download citation

Publish with us

Policies and ethics