Skip to main content

Biometrical Models in Behavioral Genetics

  • Chapter

The main goal of this chapter is to describe the research designs and statistical methods that are in popular use in behavioral genetics (BG). We begin with a brief overview of the historical background to BG in general and twin studies in particular. Next, we describe some elementary statistics required for understanding biometrical modeling. Then follows a statistical model for genetic variation, as articulated by Fisher in his classic 1918 paper, in which additive and dominance genetic variance terms are defined. The coefficients of resemblance between relatives derived from this model are then implemented in structural equation models for the analysis of data from twins and other relatives. Overall the intent is to provide a general and extensible infrastructure for the modeling of genetically informative data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitken, A. C. (1934). Note on selection from a multivariate normal population. Proceedings of the Edinburgh Mathematical Society B, 4, 106–110.

    Article  Google Scholar 

  • Bodmer, W. F. (1987). HLA, immune response, and disease. In F. Vogel & K. Sperling (Eds.), Human genetics: Proceedings of the 7th international congress (pp. 107–113). New York: Springer-Verlag.

    Google Scholar 

  • Bollen, K. A. (1989). Structural equations with latent variables. New York: John Wiley.

    Google Scholar 

  • Busjahn, A., & Hur, Y.-M. (2006). Twin registries: An ongoing success story. Twin Res Hum Genet, 9(6), 705.

    Article  PubMed  Google Scholar 

  • Carey, G. (1986). A general multivariate approach to linear modeling in human genetics. American Journal of Human Genetics, 39, 775–786.

    PubMed  CAS  Google Scholar 

  • Casella, G., & George, E. I. (1992). Explaining the gibbs sampler. The American Statistician, 46, 167–174.

    Article  Google Scholar 

  • Caspi, A., Harrington, H., Moffitt, T. E., Milne, B. J., & Poulton, R. (2006). Socially isolated children 20 years later: Risk of cardiovascular disease. Archives of Pediatrics Adolescent Medicine, 160(8), 805–811.

    Article  PubMed  Google Scholar 

  • Castle, W. E. (1903). The law of heredity of Galton and Mendel and some laws governing race improvement by selection. Proceedings of the American Academy of Sciences, 39, 233–242.

    Google Scholar 

  • Crow, J. F., & Kimura, M. (1970). Introduction to population genetics theory. New York: Harper and Row.

    Google Scholar 

  • Cudeck, R., du Toit, S. H. C., & Sorbom, D. (2001). Structural equation modeling: Present and future. Chicago: Scientific Software International.

    Google Scholar 

  • Darwin, C. (1859). On the origin of species by means of natural selection. London: John Murray.

    Google Scholar 

  • Darwin, C. (1871). The descent of man, and selection in relation to sex. London: John Murray.

    Google Scholar 

  • Defries, J., Gervais, M., & Thomas, E. (1978). Response to 30 generations of selection for open-field activity in laboratory mice. Behavior Genetics, 8(1), 3–13.

    Article  PubMed  CAS  Google Scholar 

  • DeFries, J. C., & Fulker, D. W. (1988). Multiple regression analysis of twin data: Etiology of deviant scores versus individual differences. Acta Genet Med Gemellol (Roma), 37(3–4), 205–216.

    CAS  Google Scholar 

  • Duffy, D. L., & Martin, N. G. (1994). Inferring the direction of causation in cross-sectional twin data: Theoretical and empirical considerations. Genetic Epidemiology, 11(6), 483–502.

    Article  PubMed  CAS  Google Scholar 

  • Eaves, L., & Erkanli, A. (2003). Markov chain monte carlo approaches to analysis of genetic and environmental components of human developmental change and g x e interaction. Behavior Genetics, 33(3), 279–299.

    Article  PubMed  Google Scholar 

  • Eaves, L., Foley, D., & Silberg, J. (2003). Has the ‘equal environments’ assumption been tested in twin studies? Twin Research, 6(6), 486–489.

    Article  PubMed  Google Scholar 

  • Eaves, L. J. (1976). A model for sibling effects in man. Heredity, 36, 205–214.

    Article  PubMed  CAS  Google Scholar 

  • Eaves, L. J., Long, J., & Heath, A. C. (1986). A theory of developmental change in quantitative phenotypes applied to cognitive development. Behavior Genetics, 16, 143–162.

    Article  PubMed  CAS  Google Scholar 

  • Eaves, L. J., Neale, M. C., & Maes, H. (1996). Multivariate multipoint linkage analysis of quantitative trait loci. Behavior Genetics, 26, 519–525.

    Article  PubMed  CAS  Google Scholar 

  • Edwards, A. L. (1979). Multiple regression and the analysis of variance and covariance. San Francisco, CA: W. H. Freeman.

    Google Scholar 

  • Falconer, D. S. (1960). Quantitative genetics. Edinburgh: Oliver and Boyd.

    Google Scholar 

  • Falconer, D. S. (1990). Introduction to quantitative genetics (3rd ed.). New York: Longman Group Ltd.

    Google Scholar 

  • Fisher, R. A. (1912). On an absolute criterion for fitting frequency curves. Messenger of Mathematics, 41, 155–160.

    Google Scholar 

  • Fisher, R. A. (1918). The correlation between relatives on the supposition of Mendelian inheritance. Translations of the Royal Society, Edinburgh, 52, 399–433.

    Google Scholar 

  • Fisher, R. A. (1922). On the mathematical foundations of theoretical statistics. Philosophical Transactions of the Royal Society of London, Series A, 222, 309–368.

    Article  Google Scholar 

  • Fulker, D. W. (1988). Genetic and cultural transmission in human behavior. In B. S. Weir, E. J. Eisen, M. M. Goodman, & G. Namkoong (Eds.), Proceedings of the second international conference on quantitative genetics (pp. 318–340). Sunderland, MA: Sinauer.

    Google Scholar 

  • Fulker, D. W., Baker, L. A., & Bock, R. D. (1983). Estimating components of covariance using LISREL. Data Analyst, 1, 5–8.

    Google Scholar 

  • Fulker, D. W., & Cardon, L. R. (1994). A sib-pair approach to interval mapping of quantitative trait loci. American Journal of Human Genetics, 54(6), 1092–1103.

    PubMed  CAS  Google Scholar 

  • Fulker, D. W., & Cherny, S. S. (1996). An improved multipoint sib-pair analysis of quantitative traits. Behavior Genetics, 26, 527–532.

    Article  PubMed  CAS  Google Scholar 

  • Fuller, J. L., & Herman, B. H. (1974). Effect of genotype and practice upon behavioral development in mice. Developmental Psychobiology, 7, 21–30.

    Article  PubMed  CAS  Google Scholar 

  • Fuller, J. L., & Thompson, W. R. (1978). Foundations of behavior genetics. St. Louis: C. V. Mosby.

    Google Scholar 

  • Gale, J. S. (1980). Population genetics. New York: J. Wiley.

    Google Scholar 

  • Galton, F. (1875). The history of twins, as a criterion of the relative powers of nature and nurture. Journal of the Anthropological Institute, 12, 566–576.

    Google Scholar 

  • Geman, S., & Geman, D. (1984). Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741.

    Article  Google Scholar 

  • Gillespie, N. A., Kendler, K. S., Prescott, C. A., Aggen, S. H., Gardner, C. O. J., Jacobson, K., et al. (2007). Longitudinal modeling of genetic and environmental influences on self-reported availability of psychoactive substances: Alcohol, cigarettes, marijuana, cocaine and stimulants. Psychological Medicine, 37(7), 947–959.

    Article  PubMed  Google Scholar 

  • Goldsmith, H. H., Lemery-Chalfant, K., Schmidt, N. L., Arneson, C. L., & Schmidt, C. K. (2007). Longitudinal analyses of affect, temperament, and childhood psychopathology. Twin Research and Human Genetics, 10(1), 118–126.

    Article  PubMed  Google Scholar 

  • Gordon, K (1919). Report on psychological tests of orphan children. Journal of Deliquency, 4, 45–55.

    Google Scholar 

  • Gottesman, I. I., & Gould, T. D. (2003). The endophenotype concept in psychiatry: Etymology and strategic intentions. American Journal of Psychiatry, 160(4), 636–645.

    Article  PubMed  Google Scholar 

  • Heath, A. C. (1987). The analysis of marital interaction in cross-sectional twin data. Acta Geneticae Medicae et Gemellologiae, 36, 41–49.

    PubMed  CAS  Google Scholar 

  • Heath, A. C., Kessler, R. C., Neale, M. C., Hewitt, J. K., Eaves, L. J., & Kendler, K. S. (1993). Testing hypotheses about direction of causation using cross-sectional family data. Behavior Genetics, 23(1), 29–50.

    Article  PubMed  CAS  Google Scholar 

  • Jöreskog, K. G. (1967). Some contributions to maximum likelihood factor analysis. Psychometrika, 32, 443–482.

    Article  Google Scholar 

  • Keller, M. C., & Coventry, W. L. (2005). Quantifying and addressing parameter indeterminacy in the classical twin design. Twin Research and Human Genetics, 8(3), 201–213.

    Article  PubMed  Google Scholar 

  • Kempthorne, O. (1960). Biometrical genetics. New York: Pergammon Press.

    Google Scholar 

  • Kendler, K. S., & Kidd, K. K. (1986). Recurrence risks in an oligogenic threshold model: The effect of alterations in allele frequency. Annals of Human Genetics, 50 (Pt 1), 83–91.

    Article  PubMed  CAS  Google Scholar 

  • LaBuda, M. C., DeFries, J. C., & Fulker, D. W. (1986). Multiple regression analysis of twin data obtained from selected samples. Genetic Epidemiology, 3, 425–433.

    Article  PubMed  CAS  Google Scholar 

  • Lawley, D. (1940). The estimation of factor loadings by the method of maximum likelihood. Proceedings of the Royal Society of Edinburgh, 60, 64–82.

    Google Scholar 

  • Lehmann, E. L. (1998). Elements of large-sample theory. New York: Springer.

    Google Scholar 

  • Li, T.-K., Lumeng, L., & Doolittle, D. (1993). Selective breeding for alcohol preference and associated responses. Behavior Genetics, 23(2), 163–170.

    Article  PubMed  CAS  Google Scholar 

  • Loehlin, J. (1996). The cholesky approach: A cautionary note. Behavior Genetics, 26, 65–69.

    Article  Google Scholar 

  • Lynch, M., & Walsh, B. (1998). Genetics and analysis of quantitative traits. Sunderland, MA: Sinauer.

    Google Scholar 

  • Maes, H. H., Neale, M. C., Kendler, K. S., Martin, N. G., Heath, A. C., & Eaves, L. J. (2006). Genetic and cultural transmission of smoking initiation: an extended twin kinship model. Behavior Genetics, 36(6), 795–808.

    Article  PubMed  Google Scholar 

  • Mann, C. C. (1994). Behavioral genetics in transition. Science, 264(5166), 1686–1689.

    Article  PubMed  CAS  Google Scholar 

  • Martin, N. G., & Eaves, L. J. (1977). The genetical analysis of covariance structure. Heredity, 38, 79–95.

    Article  PubMed  CAS  Google Scholar 

  • Mather, K., & Jinks, J. L. (1971). Biometrical genetics. London: Chapman and Hall.

    Google Scholar 

  • Mather, K., & Jinks, J. L. (1977). Introduction to biometrical genetics. Ithaca, New York: Cornell University Press.

    Google Scholar 

  • Mather, K., & Jinks, J. L. (1982). Biometrical genetics: The study of continuous variation (3rd ed.). London: Chapman and Hall.

    Google Scholar 

  • Maxwell, A. E. (1977). Multivariate analysis in behavioral research. New York: John Wiley.

    Google Scholar 

  • McArdle, J. J., & Boker, S. M. (1990). Rampath path diagram software. Denver, CO: Data Transforms Inc.

    Google Scholar 

  • McArdle, J. J., & Goldsmith, H. H. (1990). Alternative common factor models for multivariate biometric analyses. Behavior Genetics, 20(5), 569–608.

    Article  PubMed  CAS  Google Scholar 

  • McArdle, J. J., & Prescott, C. A. (2005). Mixed-effects variance components models for biometric family analyses. Behavior Genetics, 35(5), 631–652.

    Article  PubMed  Google Scholar 

  • Merriman, C. (1924). The intellectual resemblance of twins. Psychological Monographs, 33, 1–58.

    Google Scholar 

  • Mullis, K. (1990). The unusual origin of the polymerase chain reaction. Scientific American, 262(4), 56–61, 64–5.

    Article  PubMed  CAS  Google Scholar 

  • Nance, W. E., & Neale, M. C. (1989). Partitioned twin analysis: A power study. Behavior Genetics, 19, 143–150.

    Article  PubMed  CAS  Google Scholar 

  • Neale, M. C. (2000). Individual fit, heterogeneity, and missing data in multigroup sem. In T. D. Little, K. U. Schnabel, & J. Baumert (Eds.), Modeling longitudinal and multiple-group data: Practical issues, applied approaches, and specific examples. Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Neale, M. C. (2003a). Twins studies: Software and algorithms. In D. N. Cooper & N. J. Hoboken (Eds.), Encyclopedia of the human genome. Macmillan Publishers Ltd, Nature Publishing Group, London, p.88–96.

    Google Scholar 

  • Neale, M. C. (2003b). A finite mixture distribution model for data collected from twins. Twin Research, 6(3), 235–239.

    Google Scholar 

  • Neale, M., Boker, S., Bergeman, C., & Maes, H. (2005). The utility of genetically informative data in the study of development. In S. Boker & C. Bergeman (Eds.), Notre dame quantitative methods in psychology. New York: Erlbaum.

    Google Scholar 

  • Neale, M., Boker, S., Xie, G., & Maes, H. (2003). Mx: Statistical modeling (6th ed.). Box 980126 Richmond VA: Department of Psychiatry, Virginia Commonwealth University.

    Google Scholar 

  • Neale, M. C., & Cardon, L. R. (1992). Methodology for genetic studies of twins and families. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Neale, M. C., & Kendler, K. S. (1995). Models of comorbidity for multifactorial disorders. American Journal of Human Genetics, 57(4), 935–953.

    PubMed  CAS  Google Scholar 

  • Neale, M. C., & McArdle, J. J. (2000). Structured latent growth curves for twin data. Twin Research, 3, 165–77.

    Article  PubMed  CAS  Google Scholar 

  • Neale, M.C., Walters, E., Health, A. C., Kessler, R. C., Perusse, D., Eaves, L. J.; et al. (1994). Depression and parental bonding: cause, consequence, or genetic covariance? Genetic Epidemiology, 11(6), 503–522.

    Article  PubMed  CAS  Google Scholar 

  • Pearson, K. (1901). Mathematical contributions to the theory of evolution. VII. On the correlation of characters not quantitatively measurable. Proceedings of the Royal Society, 66, 241–244.

    Article  Google Scholar 

  • Pearson, K. (1904). On a generalized theory of alternative inheritance, with special references to Mendel’s laws. Philosophical Transactions of the Royal Society A, 203, 53–86.

    Article  Google Scholar 

  • Purcell, S. (2002). Variance components models for gene-environment interaction in twin analysis. Twin Research, 5(6), 554–571.

    Article  PubMed  Google Scholar 

  • Rabe-Hesketh, S., Skrondal, A., & Gjessing, H. (2008). Biometrical modeling of twin and family data using standard mixed model software. Biometrics, 64, 280–288.

    Article  PubMed  CAS  Google Scholar 

  • Rende, R. D., Polmin, R., & Vandenberg, S. G. (1990). Who discovered the twin method? Behavior Genetics, 20(2), 277–285.

    Article  PubMed  CAS  Google Scholar 

  • Risch, N. (2001). The genetic epidemiology of cancer: Interpreting family and twin studies and their implications for molecular genetic approaches. Cancer Epidemiology Biomakers Prevention, 10(7), 733–741.

    CAS  Google Scholar 

  • Sörbom, D. (1974). A general method for studying differences in factor means and factor structures between groups. British Journal of Mathematical and Statistical Psychology, 27, 229–239.

    Google Scholar 

  • Steiger, J. H. (1990). Structural model evaluation and modification: An interval estimation approach. Multivariate Behavioral Research, 25, 173–180.

    Article  Google Scholar 

  • Thorndike, E. L. (1905). Measurement of twins. Archieves of Philosophy, Psychology and Scientific Methods, 1, 1–64.

    Google Scholar 

  • Tryon, R. C. (1941). Studies in individual differences in maze ability. x. ratings and other measures of initial emotional responses of rats to novel inanimate objects. Journal of Comparative Psychology, 32, 447–473.

    Article  Google Scholar 

  • Visscher, P. M., Medland, S. E., Ferreira, M. A., Morley, K. I., Zhu, G., Cornes, B. K., et al. (2006). Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings. PLoS Genetics, 2(3), e41.

    Google Scholar 

  • Watson, J. D., & Crick, F. H. (1953). Genetical implications of the structure of deoxyribonucleic acid. Nature, 171(4361), 964–967.

    Article  PubMed  CAS  Google Scholar 

  • Wright, S. (1921). Correlation and causation. Journal of Agricultural Research, 20, 557–585.

    Google Scholar 

  • Wright, S. (1934). The method of path coefficients. Annals of Mathematical Statistics, 5, 161–215.

    Article  Google Scholar 

  • Wright, S. (1968). Evolution and the genetics of populations. Volume 1. Genetic and Biometric foundations. Chicago: University of Chicago Press.

    Google Scholar 

  • Yule, G. U. (1902). Mendel’s laws and their probable relation to intra-racial heredity. New Phytology, 1, 192–207.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Neale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Neale, M.C. (2009). Biometrical Models in Behavioral Genetics. In: Kim, YK. (eds) Handbook of Behavior Genetics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76727-7_2

Download citation

Publish with us

Policies and ethics