Skip to main content

RNAi-Directed Inhibition of DC-SIGN by Dendritic Cells: Prospects for HIV-1 Therapy

  • Chapter
  • 2261 Accesses

Abstract

Drag-resistant human immunodeficiency virus (HIV) infections are increasing globally, especially in North America. Therefore, it is logical to develop new therapies directed against HIV binding molecules on susceptible host cells in addition to current treatment modalities against virus functions. Inhibition of the viral genome can be achieved by degrading or silencing posttranslational genes using small interfering (si) ribonucleic acids (RNAs) consisting of double-stranded forms of RNA. These siRNAs usually contain 21–23 base pairs (bp) and are highly specific for the nucleotide sequence of the target messenger RNA (mRNA). These siRNAs form a complex with helicase and nuclease enzymes known as “RNA-induced silencing complex” (RISC) that leads to target RNA degradation. Thus, siRNA has become a method of selective destruction of HIV now used by various investigators around the globe. However, given the sequence diversity of the HIV genomes of infected subjects, it is difficult to target a specific HIV sequence. Therefore, targeting nonvariable HIV binding receptors on susceptible cells or other molecules of host cells that are directly or indirectly involved in HIV infections may be an interesting alternative to targeting the virus itself. Thus, the simultaneous use of siRNAs specific for HIV and host cells may be a unique, new approach to the therapy of HIV infections. In this article, we present evidence that siRNA directed at the CD4 independent attachment receptor (DC-SIGN) significantly inhibits HIV infection of dendritic cells (DCs). This effect may be mediated by modulation of p38 mitogen activated protein kinase (MAPK).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806-811.

    Article  CAS  PubMed  Google Scholar 

  2. Caplen NJ, Parrish S, Imani F, Fire A, Morgan RA. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci USA. 2001;98:9742-9747.

    Article  CAS  PubMed  Google Scholar 

  3. Clemens JC, Worby CA, Simonson-Leff N, et al. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc Natl Acad Sci USA. 2000;97:6499-6503.

    Article  CAS  PubMed  Google Scholar 

  4. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411:494-498.

    Article  CAS  PubMed  Google Scholar 

  5. Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 2001;15:188-200.

    Article  CAS  PubMed  Google Scholar 

  6. Bass BL. Double-stranded RNA as a template for gene silencing. Cell. 2000;101:235-238.

    Article  CAS  PubMed  Google Scholar 

  7. Hamilton AJ, Baulcombe DC. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science. 1999;286:950-952.

    Article  CAS  PubMed  Google Scholar 

  8. Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell. 2000;101:25-33.

    Article  CAS  PubMed  Google Scholar 

  9. Sodroski J, Patarca R, Rosen C, Wong-Staal F, Haseltine W. Location of the trans-activating region on the genome of human T-cell lymphotropic virus type III. Science. 1985;229:74-77.

    Article  CAS  PubMed  Google Scholar 

  10. Jacque JM, Triques K, Stevenson M. Modulation of HIV-1 replication by RNA interference. Nature. 2002;418:435-438.

    Article  CAS  PubMed  Google Scholar 

  11. Coburn GA, Cullen BR. Potent and specific inhibition of human immunodeficiency virus type 1 replication by RNA interference. J Virol. 2002;76:9225-9231.

    Article  CAS  PubMed  Google Scholar 

  12. Novina CD, Murray MF, Dykxhoorn DM, et al. siRNA-directed inhibition of HIV-1 infec-tion. Nat Med. 2002;8:681-686.

    CAS  PubMed  Google Scholar 

  13. Park WS, Miyano-Kurosaki N, Hayafune M, et al. Prevention of HIV-1 infection in human peripheral blood mononuclear cells by specific RNA interference. Nucleic Acids Res. 2002;30:4830-4835.

    Article  CAS  PubMed  Google Scholar 

  14. Hu WY, Bushman FD, Siva AC. RNA interference against retroviruses. Virus Res. 2004;102:59-64.

    Article  CAS  PubMed  Google Scholar 

  15. Anderson J, Banerjea A, Akkina R. Bispecific short hairpin siRNA constructs targeted to CD4, CXCR4, and CCR5 confer HIV-1 resistance. Oligonucleotides. 2003;13:303-312.

    Article  CAS  PubMed  Google Scholar 

  16. Anderson J, Banerjea A, Planelles V, Akkina R. Potent suppression of HIV type 1 infection by a short hairpin anti-CXCR4 siRNA. AIDS Res Hum Retroviruses. 2003;19:699-706.

    Article  CAS  PubMed  Google Scholar 

  17. Martinez MA, Gutierrez A, Armand-Ugon M, et al. Suppression of chemokine receptor expression by RNA interference allows for inhibition of HIV-1 replication. AIDS. 2002;16:2385-2390.

    Article  CAS  PubMed  Google Scholar 

  18. Qin XF, An DS, Chen IS, Baltimore D. Inhibiting HIV-1 infection in human T cells by lenti-viral-mediated delivery of small interfering RNA against CCR5. Proc Natl Acad Sci USA. 2003;100:183-188.

    Article  CAS  PubMed  Google Scholar 

  19. Cordelier P, Morse B, Strayer DS. Targeting CCR5 with siRNAs: using recombinant SV40-derived vectors to protect macrophages and microglia from R5-tropic HIV. Oligonucleotides. 2003;13:281-294.

    Article  CAS  PubMed  Google Scholar 

  20. Arrighi JF, Pion M, Garcia E, et al. DC-SIGN-mediated infectious synapse formation enhances X4 HIV-1 transmission from dendritic cells to T cells. J Exp Med. 2004;200:1279-1288.

    Article  CAS  PubMed  Google Scholar 

  21. Arrighi JF, Pion M, Wiznerowicz M, et al. Lentivirus-mediated RNA interference of DC-SIGN expression inhibits human immunodeficiency virus transmission from dendritic cells to T cells. J Virol. 2004;78:10848-10855.

    Article  CAS  PubMed  Google Scholar 

  22. Smithgall MD, Wong JG, Linsley PS, Haffar OK. Costimulation of CD4+ T cells via CD28 modulates human immunodeficiency virus type 1 infection and replication in vitro. AIDS Res Hum Retroviruses. 1995;11:885-892.

    Article  CAS  PubMed  Google Scholar 

  23. Hiscott J, Kwon H, Genin P. Hostile takeovers: viral appropriation of the NF-kappaB path-way. J Clin Invest. 2001;107:143-151.

    Article  CAS  PubMed  Google Scholar 

  24. Dauer M, Obermaier B, Herten J, et al. Mature dendritic cells derived from human monocytes within 48 hours: a novel strategy for dendritic cell differentiation from blood precursors. J Immunol. 2003;170:4069-4076.

    CAS  PubMed  Google Scholar 

  25. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156-159.

    Article  CAS  PubMed  Google Scholar 

  26. Shively L, Chang L, LeBon JM, Liu Q, Riggs AD, Singer-Sam J. Real-time PCR assay for quantitative mismatch detection. Biotechniques. 2003;34:498-502, 504.

    CAS  PubMed  Google Scholar 

  27. Secchiero P, Zella D, Curreli S, et al. Engagement of CD28 modulates CXC chemokine receptor 4 surface expression in both resting and CD3-stimulated CD4+ T cells. J Immunol. 2000;164:4018-4024.

    CAS  PubMed  Google Scholar 

  28. Bashirova AA, Wu L, Cheng J, Kewal-Ramani VN, Hughes A, Carrington M. Novel member of the CD209 (DC-SIGN) gene family in primates. J Virol. 2003;77:217-227.

    Article  CAS  PubMed  Google Scholar 

  29. Steinman RM, Young JW. Signals arising from antigen-presenting cells. Curr Opin Immunol. 1991;3:361-372.

    Article  CAS  PubMed  Google Scholar 

  30. Steinman RM. DC-SIGN: a guide to some mysteries of dendritic cells. Cell. 2000;100:491-494.

    Article  CAS  PubMed  Google Scholar 

  31. Bender A, Sapp M, Schuler G, Steinman RM, Bhardwaj N. Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood. J Immunol Methods. 1996;196:121-135.

    Article  CAS  PubMed  Google Scholar 

  32. Cella M, Engering A, Pinet V, Pieters J, Lanzavecchia A. Inflammatory stimuli induce accu-mulation of MHC class II complexes on dendritic cells. Nature. 1997;388:782-787.

    Article  CAS  PubMed  Google Scholar 

  33. Romani N, Gruner S, Brang D, et al. Proliferating dendritic cell progenitors in human blood. J Exp Med. 1994;180:83-93.

    Article  CAS  PubMed  Google Scholar 

  34. Granelli-Piperno A, Delgado E, Finkel V, Paxton W, Steinman RM. Immature dendritic cells selectively replicate macrophagetropic (M-tropic) human immunodeficiency virus type 1, while mature cells efficiently transmit both M- and T-tropic virus to T cells. J Virol. 1998;72:2733-2737.

    CAS  PubMed  Google Scholar 

  35. Cameron P, Pope M, Granelli-Piperno A, Steinman RM. Dendritic cells and the replication of HIV-1. J Leukoc Biol. 1996;59:158-171.

    CAS  PubMed  Google Scholar 

  36. Frank I, Kacani L, Stoiber H, et al. Human immunodeficiency virus type 1 derived from coc-ultures of immature dendritic cells with autologous T cells carries T-cell-specific molecules on its surface and is highly infectious. J Virol. 1999;73:3449-3454.

    CAS  PubMed  Google Scholar 

  37. Ganesh L, Leung K, Lore K, et al. Infection of specific dendritic cells by CCR5-tropic human immunodeficiency virus type 1 promotes cell-mediated transmission of virus resistant to broadly neutralizing antibodies. J Virol. 2004;78:11980-11987.

    Article  CAS  PubMed  Google Scholar 

  38. Nair MPN, Mahajan SD, Schwartz SA, et al. Cocaine modulates dendritic cell-specific C type intercellular adhesion molecule-3-grabbing nonintegrin expression by dendritic cells in HIV-1 patients. J Immunol. 2005;174:6617-6626.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhavan P. N. Nair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Nair, M.P.N. et al. (2008). RNAi-Directed Inhibition of DC-SIGN by Dendritic Cells: Prospects for HIV-1 Therapy. In: Rapaka, R.S., Sadée, W. (eds) Drug Addiction. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76678-2_7

Download citation

Publish with us

Policies and ethics