Skip to main content

Ventilatory Control during Intermittent High-Intensity Exercise in Humans

  • Chapter
Integration in Respiratory Control

Intermittent supra-maximal cycling of varying work: recovery durations was used to explore the kinetics of respiratory compensation for the metabolic acidosis of high-intensity exercise (> lactate threshold, θl). For a 10:20 s duty-cycle, blood [lactate] ([L]) was not increased, and there was no evidence of respiratory compensation (RC); i.e, no increase in the ventilation (Ve)-CO2 output (Vco2) slope, nor fall in end-tidal PCO2 (PETCO2). For longer duty-cycles, [L] was elevated, stabilizing (30 s:60 s exercise) or rising progressively (60 s:120 s, 90 s:180 s exercise). In addition, Vco2 and Ve now oscillated with WR, with evidence of delayed RC (progressive increase in Ve — Vco2 slope; decrease in PETCO2) being more marked with longer duty-cycles. These results, which extend earlier findings with supra- θl step and ramp exercise, are not consistent with an appreciable contribution to RC from zero-order central command or peripheral neurogenesis. The reasons for the slow RC kinetics are unclear, but may reflect in part the H+-signal transduction properties of carotid chemoreceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Åstrand, I., Åstrand, P.-O., Christensen, E.H. and Hedman, R. (1960) Myohaemoglobin as an oxygen-store in man. Acta Physiol. Scand. 48, 454–460.

    Article  PubMed  Google Scholar 

  • Buckler, K.J., Williams, B.A. and Honore, E. (2000) An oxygen, acid and anaesthetic sensitive TASK-like background potassium channel in rat arterial chemoreceptor cells. J. Physiol. 525, 135–142.

    Article  CAS  PubMed  Google Scholar 

  • Buckler, K.J., Vaughan-Jones, R.D., Peers, C., Lagadicgossmann, D. and Nye, P.C.G. (1991) Effects of extracellular pH, PCO2 and HCO3 on intracellular pH in isolated type-I cells of the neonatal rat carotid body. J. Physiol. 444, 703–721.

    CAS  PubMed  Google Scholar 

  • Kaufman, M. P. and Forster, H.V. (1996) Reflexes controlling circulatory, ventilatory and airway responses to exercise. In: L.B. Rowell and J.T. Shepherd (Eds.), Handbook of Physiology, Section 12: Exercise: Regulation and Integration of Multiple Systems. Oxford University Press, New York, pp. 381–447.

    Google Scholar 

  • Rausch, S.M., Whipp, B.J., Wasserman, K. and Huszczuk, A. (1991) Role of the carotid bodies in the respiratory compensation for the metabolic acidosis of exercise in humans. J. Physiol. 444, 567–578.

    CAS  PubMed  Google Scholar 

  • Turner, A.P., Cathcart, A.J., Parker, M.E., Butterworth, C., Wilson, J. and Ward, S.A. (2006) Oxygen uptake and muscle desaturation profiles during intermittent cycling in humans. Med. Sci. Sports Exerc. 38, 492–503.

    Article  PubMed  Google Scholar 

  • Waldrop, T.G., Eldridge, F.L., Iwamoto, G.A. and Mitchell, J.H. (1996) Central neural control of respiration and circulation during exercise. In: L.B. Rowell and J.T. Shepherd (Eds.), Handbook of Physiology, Section 12: Exercise: Regulation and Integration of Multiple Systems. Oxford University Press, New York, pp. 333–380.

    Google Scholar 

  • Ward, S.A. (2003) Models of ventilatory control during exercise: peripheral chemoreflex considerations. Int. J. Computer Sci. 2, 52–65.

    Google Scholar 

  • Wasserman, K. and Casaburi, R. (1991) Acid-base regulation during exercise in humans. In: B.J. Whipp and K. Wasserman (Eds.), Pulmonary Physiology and Pathophysiology of Exercise. Dekker, New York, pp. 405–448.

    Google Scholar 

  • Wasserman, K., Whipp, B.J., Koyal, S.N. and Cleary, M.G. (1975) Effect of carotid body resection on ventilatory and acid-base control during exercise. J. Appl. Physiol. 39, 354–358.

    CAS  PubMed  Google Scholar 

  • Whipp, B.J. (1996) Domains of aerobic function and their limiting parameters. In: J.M. Steinacker and S.A. Ward (Eds.), The Physiology and Pathophysiology of Exercise Tolerance. Plenum, New York, pp. 83–89.

    Google Scholar 

  • Whipp, B.J. and Ward, S.A (1991) The coupling of ventilation to pulmonary gas exchange during exercise. In: B.J. Whipp and K. Wasserman (Eds.), Pulmonary Physiology and Pathophysiology of Exercise. Dekker, New York, pp. 271–307.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Cathcart, A.J., Turner, A.P., Butterworth, C., Parker, M., Wilson, J., Ward, S.A. (2008). Ventilatory Control during Intermittent High-Intensity Exercise in Humans. In: Poulin, M.J., Wilson, R.J.A. (eds) Integration in Respiratory Control. Advances in Experimental Medicine and Biology, vol 605. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73693-8_35

Download citation

Publish with us

Policies and ethics