Skip to main content

Schnurri-3: A Key Regulator of Postnatal Skeletal Remodeling

  • Conference paper
Book cover Osteoimmunology

Schnurri-3, a large zinc finger protein distantly related to Drosophila Shn, is a potent and essential regulator of adult bone formation. Mice lacking Shn3 display an osteosclerotic phenotype with profoundly increased bone mass due to augmented osteoblast activity. Shn3 controls protein levels of Runx2, the principal regulator of osteoblast differentiation, by promoting its degradation. In osteoblasts, Shn3 functions as a component of a trimeric complex between Runx2 and the E3 ubiquitin ligase WWP1. This complex inhibits Runx2 function and expression of genes involved in extracellular matrix mineralization due to the ability of WWP1 to promote Runx2 polyubiquitination and proteasome-dependent degradation. Our study reveals an essential role for Shn3 as a regulator of postnatal bone mass. Compounds designed to block Shn3/WWP1 function may be possible therapeutic agents for the treatment of osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Affolter, M., T. Marty, M.A. Vigano, and A. Jazwinska. 2001. Nuclear interpretation of Dpp signaling in Drosophila. Embo J 20(13): 3298–3305.

    Article  CAS  PubMed  Google Scholar 

  • Ducy, P., M. Starbuck, M. Priemel, J. Shen, G. Pinero, V. Geoffroy, M. Amling, and G. Karsenty. 1999. A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development. Genes Dev 13(8): 1025–1036.

    Article  CAS  PubMed  Google Scholar 

  • Ingham, R.J., G. Gish, and T. Pawson. 2004. The Nedd4 family of E3 ubiquitin ligases: functional diversity within a common modular architecture. Oncogene 23(11): 1972–1984.

    Article  CAS  PubMed  Google Scholar 

  • Jones, D.C., M.N. Wein, M. Oukka, J.G. Hofstaetter, M.J. Glimcher, and L.H. Glimcher. 2006. Regulation of adult bone mass by the zinc finger adapter protein Schnurri-3. Science 312(5777): 1223–1227.

    Article  CAS  PubMed  Google Scholar 

  • Karsenty, G., and E.F. Wagner. 2002. Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2(4): 389–406.

    Article  CAS  PubMed  Google Scholar 

  • Komori, T., H. Yagi, S. Nomura, A. Yamaguchi, K. Sasaki, K. Deguchi, Y. Shimizu, R.T. Bronson, Y.H. Gao, M. Inada, M. Sato, R. Okamoto, Y. Kitamura, S. Yoshiki, and T. Kishimoto. 1997. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89(5): 755–764.

    Article  CAS  PubMed  Google Scholar 

  • Lee, B., K. Thirunavukkarasu, L. Zhou, L. Pastore, A. Baldini, J. Hecht, V. Geoffroy, P. Ducy, and G. Karsenty. 1997. Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia. Nat Genet 16(3): 307–310.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., I. Sarosi, X.Q. Yan, S. Morony, C. Capparelli, H.L. Tan, S. McCabe, R. Elliott, S. Scully, G. Van, S. Kaufman, S.C. Juan, Y. Sun, J. Tarpley, L. Martin, K. Christensen, J. McCabe, P. Kostenuik, H. Hsu, F. Fletcher, C.R. Dunstan, D.L. Lacey, and W.J. Boyle. 2000. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci USA 97(4): 1566–1571.

    Article  CAS  PubMed  Google Scholar 

  • Mundlos, S., F. Otto, C. Mundlos, J.B. Mulliken, A.S. Aylsworth, S. Albright, D. Lindhout, W.G. Cole, W. Henn, J.H. Knoll, M.J. Owen, R. Mertelsmann, B.U. Zabel, and B.R. Olsen. 1997. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 89(5): 773–779.

    Article  CAS  PubMed  Google Scholar 

  • Nakashima, K., X. Zhou, G. Kunkel, Z. Zhang, J.M. Deng, R.R. Behringer, and B. de Crombrugghe. 2002. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108(1): 17–29.

    Article  CAS  PubMed  Google Scholar 

  • Otto, F., A.P. Thornell, T. Crompton, A. Denzel, K.C. Gilmour, I.R. Rosewell, G.W. Stamp, R.S. Beddington, S. Mundlos, B.R. Olsen, P.B. Selby, and M.J. Owen. 1997. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89(5): 765–771.

    Article  CAS  PubMed  Google Scholar 

  • Oukka, M., S.T. Kim, G. Lugo, J. Sun, L.C. Wu, and L.H. Glimcher. 2002. A mammalian homolog of Drosophila schnurri, KRC, regulates TNF receptor-driven responses and interacts with TRAF2. Mol Cell 9(1): 121–131.

    Article  CAS  PubMed  Google Scholar 

  • Oukka, M., M.N. Wein, and L.H. Glimcher. 2004. Schnurri-3 (KRC) interacts with c-Jun to regulate the IL-2 gene in T cells. J Exp Med 199(1): 15–24.

    Article  CAS  PubMed  Google Scholar 

  • Patterson, C. 2002. A new gun in town: the U box is a ubiquitin ligase domain. Sci STKE 2002(116): PE4.

    Article  PubMed  Google Scholar 

  • Pickart, C.M. 2004. Back to the future with ubiquitin. Cell 116(2): 181–190.

    Article  CAS  PubMed  Google Scholar 

  • Stein, G.S., J.B. Lian, A.J. van Wijnen, J.L. Stein, M. Montecino, A. Javed, S.K. Zaidi, D.W. Young, J.Y. Choi, and S.M. Pockwinse. 2004. Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene 23(24): 4315–4329.

    Article  CAS  PubMed  Google Scholar 

  • Whyte, M.P. 2003. Sclerosing Bone Disorders. Primer on the metabolic Bone Diseases and Disorders of mineral metabolism (5th ed). The American Society for Bone and Mineral Research; 449–465.

    Google Scholar 

  • Wu, L.C., C.H. Mak, N. Dear, T. Boehm, L. Foroni, and T.H. Rabbitts. 1993. Molecular cloning of a zinc finger protein which binds to the heptamer of the signal sequence for V(D) J recombination. Nucleic Acids Res 21(22): 5067–5073.

    Article  CAS  PubMed  Google Scholar 

  • Yamashita, M., S.X. Ying, G.M. Zhang, C. Li, S.Y. Cheng, C.X. Deng, and Y.E. Zhang. 2005. Ubiquitin ligase Smurf1 controls osteoblast activity and bone homeostasis by targeting MEKK2 for degradation. Cell 121(1): 101–113.

    Article  CAS  PubMed  Google Scholar 

  • Yang, X., K. Matsuda, P. Bialek, S. Jacquot, H.C. Masuoka, T. Schinke, L. Li, S. Brancorsini, P. Sassone-Corsi, T.M. Townes, A. Hanauer, and G. Karsenty. 2004. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry Syndrome. Cell 117(3): 387–398.

    Article  CAS  PubMed  Google Scholar 

  • Zamurovic, N., D. Cappellen, D. Rohner, and M. Susa. 2004. Coordinated activation of notch, Wnt, and transforming growth factor-beta signaling pathways in bone morphogenic protein 2-induced osteogenesis. Notch target gene Hey1 inhibits mineralization and Runx2 transcriptional activity. J Biol Chem 279(36): 37704–37715.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this paper

Cite this paper

Jones, D.C., Wein, M.N., Glimcher, L.H. (2007). Schnurri-3: A Key Regulator of Postnatal Skeletal Remodeling. In: Choi, Y. (eds) Osteoimmunology. Advances in Experimental Medicine and Biology, vol 602. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-72009-8_1

Download citation

Publish with us

Policies and ethics