Skip to main content

The Rationale for an Immunological Approach to Alzheimer's Therapeutics

  • Chapter
Pharmacological Mechanisms in Alzheimer's Therapeutics
  • 693 Accesses

Immunotherapy toward the Aβ peptide offers a unique therapeutic approach to the treatment of Alzheimer’s disease. The rationale is that antibodies interacting with the Aβ peptide will accelerate its clearance from the CNS, lead to less amyloid deposition, and reduce the other pathological features of Alzheimer’s disease. Evidence from transgenic mouse models of amyloid deposition is highly supportive of both pathological and functional benefits of this approach. Data from human trials of active immunization (using a vaccine to stimulate generation of antibodies) led to several apparent cases of autoimmune CNS inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Banks, W. A., Terrell, B., Farr, S. A., Robinson, S. M., Nonaka, N., Morley, J. E. (2002). Passage of amyloid beta protein antibody across the blood–brain barrier in a mouse model of Alzheimer's disease. Peptides, 23, 2223–2226.

    Article  CAS  PubMed  Google Scholar 

  • Bard, F., Cannon, C., Barbour, R., Burke, R. L., Games, D., Grajeda, H., et al. (2000). Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nature Medicine, 6, 916–919.

    Article  CAS  PubMed  Google Scholar 

  • Carty, N. C., Wilcock, D. M., Rosenthal, A., Grimm, J., Pons, J., Ronan, V., et al. (2006). Intracranial administration of deglycosylated C-terminal-specific anti-Abeta antibody efficiently clears amyloid plaques without activating microglia in amyloid-depositing transgenic mice. Journal of Neuroinflammation, 3, 11.

    Article  CAS  PubMed  Google Scholar 

  • Deane, R., Sagare, A., Hamm, K., Parisi, M., LaRue, B., Guo, H., et al. (2005). IgG-assisted age-dependent clearance of Alzheimer's amyloid beta peptide by the blood–brain barrier neonatal Fc receptor. Journal of Neuroscience, 25, 11495–11503.

    Article  CAS  PubMed  Google Scholar 

  • DeMattos, R. B., Bales, K. R., Parsadanian, M., O'dell, M. A., Foss, E. M., Paul, S. M., et al. (2002). Plaque-associated disruption of CSF and plasma amyloid-beta (Abeta) equilibrium in a mouse model of Alzheimer's disease. Journal of Neurochemistry, 81, 229–236.

    Article  CAS  PubMed  Google Scholar 

  • Dodart, J. C., Bales, K. R., Gannon, K. S., Greene, S. J., DeMattos, R. B., Mathis, C., et al. (2002). Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer's disease model. Nature Neuroscience, 5, 452–457.

    CAS  PubMed  Google Scholar 

  • Ferrer, I., Boada, R. M., Sanchez Guerra, M. L., Rey, M. J., & Costa-Jussa, F. (2004). Neuropathology and pathogenesis of encephalitis following amyloid-beta immunization in Alzheimer's disease. Brain Pathology, 14, 11–20.

    Article  CAS  PubMed  Google Scholar 

  • Gilman, S., Koller, M., Black, R. S., Jenkins, L., Griffith, S. G., Fox, N. C., et al. (2005). Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology, 64, 1553–1562.

    Article  CAS  PubMed  Google Scholar 

  • Hardy, J. & Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science, 297, 353–356.

    Article  CAS  PubMed  Google Scholar 

  • Hock, C., Konietzko, U., Streffer, J. R., Tracy, J., Signorell, A., Muller-Tillmanns, B., et al. (2003). Antibodies against beta-amyloid slow cognitive decline in Alzheimer's disease. Neuron, 38, 547–554.

    Article  CAS  PubMed  Google Scholar 

  • Joseph, J. A., Shukhitt-Hale, B. D. N. A., Martin, A., Perry, G., & Smith, M. A. (2001). Copernicus revisited: Amyloid beta in Alzheimer's disease. Neurobiology of Aging, 22, 131–146.

    Article  CAS  PubMed  Google Scholar 

  • Klyubin, I., Walsh, D. M., Lemere, C. A., Cullen, W. K., Shankar, G. M., Betts, V., et al. (2005). Amyloid beta protein immunotherapy neutralizes Abeta oligomers that disrupt synaptic plasticity in vivo. Nature Medicine, 11, 556–561.

    Article  CAS  PubMed  Google Scholar 

  • Kotilinek, L. A., Bacskai, B., Westerman, M., Kawarabayashi, T., Younkin, L., Hyman, B. T., et al. (2002). Reversible memory loss in a mouse transgenic model of Alzheimer's disease. Journal of Neuroscience, 22, 6331–6335.

    CAS  PubMed  Google Scholar 

  • Lesne, S., Koh, M. T., Kotilinek, L., Kayed, R., Glabe, C. G., Yang, A., et al. (2006). A specific amyloid-beta protein assembly in the brain impairs memory. Nature, 440, 352–357.

    Article  CAS  PubMed  Google Scholar 

  • Li, Q., Cao, C., Chackerian, B., Schiller, J., Gordon, M., Ugen, K. E., et al. (2004). Overcoming antigen masking of anti-Abeta antibodies reveals breaking of B cell tolerance by virus-like particles in Abeta immunized amyloid precursor protein transgenic mice. BMC Neuroscience, 5, 21.

    Article  CAS  PubMed  Google Scholar 

  • Masliah, E., Hansen, L., Adame, A., Crews, L., Bard, F., Lee, C., et al. (2005). Abeta vaccination effects on plaque pathology in the absence of encephalitis in Alzheimer disease. Neurology, 64, 129–131.

    CAS  PubMed  Google Scholar 

  • Morgan, D., Diamond, D. M., Gottschall, P. E., Ugen, K. E., Dickey, C., Hardy, J., et al. (2000). A beta peptide vaccination prevents memory loss in an animal model of Alzheimer's disease. Nature, 408, 982–985.

    Article  CAS  PubMed  Google Scholar 

  • Morgan, D., Gordon, M. N., Tan, J., Wilcock, D., & Rojiani, A. M. (2005). Dynamic complexity of the microglial activation response in transgenic models of amyloid deposition: implications for Alzheimer therapeutics. Journal of Neuropathology and Experimental Neurology, 64, 743–753.

    Article  CAS  PubMed  Google Scholar 

  • Nicoll, J. A., Wilkinson, D., Holmes, C., Steart, P., Markham, H., & Weller, R. O. (2003). Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: A case report. Nature Medicine, 9, 448–452.

    Article  CAS  PubMed  Google Scholar 

  • Orgogozo, J. M., Gilman, S., Dartigues, J. F., Laurent, B., Puel, M., Kirby, L. C., et al. (2003). Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology, 61, 46–54.

    CAS  PubMed  Google Scholar 

  • Pfeifer, M., Boncristiano, S., Bondolfi, L., Stalder, A., Deller, T., Staufenbiel, M., et al. (2002). Cerebral hemorrhage after passive anti-Abeta immunotherapy. Science, 298, 1379.

    Article  CAS  PubMed  Google Scholar 

  • Racke, M. M., Boone, L. I., Hepburn, D. L., Parsadainian, M., Bryan, M. T., Ness, D. K., et al. (2005). Exacerbation of cerebral amyloid angiopathy-associated microhemorrhage in amyloid precursor protein transgenic mice by immunotherapy is dependent on antibody recognition of deposited forms of amyloid beta. Journal of Neuroscience, 25, 629–636.

    Article  CAS  PubMed  Google Scholar 

  • Schenk, D., Barbour, R., Dunn, W., Gordon, G., Grajeda, H., Guido, T., et al. (1999). Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature, 400, 173–177.

    Article  CAS  PubMed  Google Scholar 

  • Solomon, B., Koppel, R., Frankel, D., & Hanan-Aharon, E. (1997). Disaggregation of Alzheimer beta-amyloid by site-directed mAb. Proceedings of the National Academy of Sciences of the United States of America, 94, 4109–4112.

    Article  CAS  PubMed  Google Scholar 

  • Solomon, B., Koppel, R., Hanan, E., & Katzav, T. (1996). Monoclonal antibodies inhibit in vitro fibrillar aggregation of the Alzheimer beta-amyloid peptide. Proceedings of the National Academy of Sciences of the United States of America, 93, 452–455.

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi, A., Irizarry, M. C., Duff, K., Saido, T. C., Hsiao, A. K., Hasegawa, M., et al. (2000). Age-related amyloid beta deposition in transgenic mice overexpressing both Alzheimer mutant presenilin 1 and amyloid beta precursor protein Swedish mutant is not associated with global neuronal loss. The American Journal of Pathology, 157, 331–339.

    CAS  PubMed  Google Scholar 

  • Walsh, D. M., Klyubin, I., Fadeeva, J. V., Cullen, W. K., Anwyl, R., Wolfe, M. S., et al. (2002). Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature, 416, 535–539.

    Article  CAS  PubMed  Google Scholar 

  • Westerman, M. A., Cooper-Blacketer, D., Mariash, A., Kotilinek, L., Kawarabayashi, T., Younkin, L. H., et al. (2002). The relationship between Abeta and memory in the Tg2576 mouse model of Alzheimer's disease. Journal of Neuroscience, 22, 1858–1867.

    CAS  PubMed  Google Scholar 

  • Wilcock, D. M., Alamed, J., Gottschall, P. E., Grimm, J., Rosenthal, A., Pons, J., et al. (2006). Deglycosylated anti-amyloid-beta antibodies eliminate cognitive deficits and reduce parenchymal amyloid with minimal vascular consequences in aged amyloid precursor protein transgenic mice. Journal of Neuroscience, 26, 5340–5346.

    Article  CAS  PubMed  Google Scholar 

  • Wilcock, D. M., DiCarlo, G., Henderson, D., Jackson, J., Clarke, K., Ugen, K. E., et al. (2003). Intracranially administered anti-Abeta antibodies reduce beta-amyloid deposition by mechanisms both independent of and associated with microglial activation. Journal of Neuroscience, 23, 3745–3751.

    CAS  PubMed  Google Scholar 

  • Wilcock, D. M., Munireddy, S. K., Rosenthal, A., Ugen, K. E., Gordon, M. N., & Morgan, D. (2004). Microglial activation facilitates Abeta plaque removal following intracranial anti-Abeta antibody administration. Neurobiology of Disease, 15, 11–20.

    Article  CAS  PubMed  Google Scholar 

  • Wilcock, D. M., Rojiani, A., Rosenthal, A., Levkowitz, G., Subbarao, S., Alamed, J., et al. (2004). Passive amyloid immunotherapy clears amyloid and transiently activates microglia in a transgenic mouse model of amyloid deposition. Journal of Neuroscience, 24, 6144–6151.

    Article  CAS  PubMed  Google Scholar 

  • Wilcock, D. M., Rojiani, A., Rosenthal, A., Subbarao, S., Freeman, M. J., Gordon, M. N., et al. (2004). Passive immunotherapy against Abeta in aged APP-transgenic mice reverses cognitive deficits and depletes parenchymal amyloid deposits in spite of increased vascular amyloid and microhemorrhage. Journal of Neuroinflammation, 1, 24.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Morgan, D. (2007). The Rationale for an Immunological Approach to Alzheimer's Therapeutics. In: Pharmacological Mechanisms in Alzheimer's Therapeutics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-71522-3_9

Download citation

Publish with us

Policies and ethics