Skip to main content

Proteasome Inhibitors

Recent Progress and Future Directions

  • Chapter
  • First Online:
Modulation of Protein Stability in Cancer Therapy

Abstract

The proteasome continues to be an attractive target for cancer drug discovery and was validated as such by the successful development of bortezomib. Despite its remarkable efficacy, concerns regarding side effects and drug resistance limit the widespread application of bortezomib. Thus, there has been a heightened interest in the development of a new class of proteasome inhibitors. In this chapter, we discuss recent efforts towards the development of proteasome inhibitors. In addition, we discuss a novel class of compounds targeting an alternative proteasome, the immunoproteasome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, J. (2002). Development of the proteasome inhibitor PS-341. Oncologist 7, 9–16.

    Article  PubMed  CAS  Google Scholar 

  • Adams, J., Behnke, M., Chen, S., Cruickshank, A.A., Dick, L.R., Grenier, L., Klunder, J.M., Ma, Y.T., Plamondon, L., and Stein, R.L. (1998). Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids. Bioorg Med Chem Lett 8, 333–338.

    Article  PubMed  CAS  Google Scholar 

  • Berkers, C.R., Verdoes, M., Lichtman, E., Fiebiger, E., Kessler, B.M., Anderson, K.C., Ploegh, H.L., Ovaa, H., and Galardy, P.J. (2005). Activity probe for in vivo profiling of the specificity of proteasome inhibitor bortezomib. Nat Methods 2, 357–362.

    Article  PubMed  CAS  Google Scholar 

  • Berkers, C.R., van Leeuwen, F.W., Groothuis, T.A., Peperzak, V., van Tilburg, E.W., Borst, J., Neefjes, J.J., and Ovaa, H. (2007). Profiling proteasome activity in tissue with fluorescent probes. Mol Pharm 4, 739–748.

    Article  PubMed  CAS  Google Scholar 

  • Blum, G., Mullins, S.R., Keren, K., Fonovic, M., Jedeszko, C., Rice, M.J., Sloane, B.F., and Bogyo, M. (2005). Dynamic imaging of protease activity with fluorescently quenched activity-based probes. Nat Chem Biol 1, 203–209.

    Article  PubMed  CAS  Google Scholar 

  • Bogyo, M., McMaster, J.S., Gaczynska, M., Tortorella, D., Goldberg, A.L., and Ploegh, H. (1997). Covalent modification of the active site threonine of proteasomal beta subunits and the Escherichia coli homolog HslV by a new class of inhibitors. Proc Natl Acad Sci U S A 94, 6629–6634.

    Article  PubMed  CAS  Google Scholar 

  • Bogyo, M., Shin, S., McMaster, J.S., and Ploegh, H.L. (1998). Substrate binding and sequence preference of the proteasome revealed by active-site-directed affinity probes. Chem Biol 5, 307–320.

    Article  PubMed  CAS  Google Scholar 

  • Borissenko, L., and Groll, M. (2007). 20S proteasome and its inhibitors: crystallographic knowledge for drug development. Chem Rev 107, 687–717.

    Article  PubMed  CAS  Google Scholar 

  • Brannigan, J.A., Dodson, G., Duggleby, H.J., Moody, P.C., Smith, J.L., Tomchick, D.R., and Murzin, A.G. (1995). A protein catalytic framework with an N-terminal nucleophile is capable of self-activation. Nature 378, 416–419.

    Article  PubMed  CAS  Google Scholar 

  • Bromme, D., Klaus, J.L., Okamoto, K., Rasnick, D., and Palmer, J.T. (1996). Peptidyl vinyl sulfones: a new class of potent and selective cysteine protease inhibitors. Biochem J 315, 85–89.

    PubMed  CAS  Google Scholar 

  • Cardozo, C. (1993). Catalytic components of the bovine pituitary multicatalytic proteinase complex (proteasome). Enzyme Protein 47, 296–305.

    PubMed  CAS  Google Scholar 

  • Chauhan, D., Li, G., Podar, K., Hideshima, T., Mitsiades, C., Schlossman, R., Munshi, N., Richardson, P., Cotter, F.E., and Anderson, K.C. (2004). Targeting mitochondria to overcome conventional and bortezomib/proteasome inhibitor PS-341 resistance in multiple myeloma (MM) cells. Blood 104, 2458–2466.

    Article  PubMed  CAS  Google Scholar 

  • Chauhan, D., Hideshima, T., and Anderson, K.C. (2006). A novel proteasome inhibitor NPI-0052 as an anticancer therapy. Br J Cancer 95, 961–965.

    Article  PubMed  CAS  Google Scholar 

  • Chen, D., Daniel, K.G., Kuhn, D.J., Kazi, A., Bhuiyan, M., Li, L., Wang, Z., Wan, S.B., Lam, W.H., Chan, T.H., and Dou, Q.P. (2004). Green tea and tea polyphenols in cancer prevention. Front Biosci 9, 2618–2631.

    Article  PubMed  CAS  Google Scholar 

  • Chen, D., Daniel, K.G., Chen, M.S., Kuhn, D.J., Landis-Piwowar, K.R., and Dou, Q.P. (2005). Dietary flavonoids as proteasome inhibitors and apoptosis inducers in human leukemia cells. Biochem Pharmacol 69, 1421–1432.

    Article  PubMed  CAS  Google Scholar 

  • Ciechanover, A., Orian, A., and Schwartz, A.L. (2000). Ubiquitin-mediated proteolysis: biological regulation via destruction. Bioessays 22, 442–451.

    Article  PubMed  CAS  Google Scholar 

  • Demo, S.D., Kirk, C.J., Aujay, M.A., Buchholz, T.J., Dajee, M., Ho, M.N., Jiang, J., Laidig, G.J., Lewis, E.R., Parlati, F., Shenk, K.D., Smyth, M.S., Sun, C.M., Vallone, M.K., Woo, T.M., Molineaux, C.J., and Bennett, M.K. (2007). Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Res 67, 6383–6391.

    Article  PubMed  CAS  Google Scholar 

  • Dick, L.R., Cruikshank, A.A., Grenier, L., Melandri, F.D., Nunes, S.L., and Stein, R.L. (1996). Mechanistic studies on the inactivation of the proteasome by lactacystin: a central role for clasto-lactacystin beta-lactone. J Biol Chem 271, 7273–7276.

    Article  PubMed  CAS  Google Scholar 

  • Dick, L.R., Cruikshank, A.A., Destree, A.T., Grenier, L., McCormack, T.A., Melandri, F.D., Nunes, S.L., Palombella, V.J., Parent, L.A., Plamondon, L., and Stein, R.L. (1997). Mechanistic studies on the inactivation of the proteasome by lactacystin in cultured cells. J Biol Chem 272, 182–188.

    Article  PubMed  CAS  Google Scholar 

  • Elofsson, M., Splittgerber, U., Myung, J., Mohan, R., and Crews, C.M. (1999). Towards subunit-specific proteasome inhibitors: synthesis and evaluation of peptide alpha′,beta′-epoxyketones. Chem Biol 6, 811–822.

    Article  PubMed  CAS  Google Scholar 

  • Feling, R.H., Buchanan, G.O., Mincer, T.J., Kauffman, C.A., Jensen, P.R., and Fenical, W. (2003). Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus salinospora. Angew Chem Int Ed Engl 42, 355–357.

    Article  PubMed  CAS  Google Scholar 

  • Fenteany, G., Standaert, R.F., Lane, W.S., Choi, S., Corey, E.J., and Schreiber, S.L. (1995). Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 268, 726–731.

    Article  PubMed  CAS  Google Scholar 

  • Fevig, J.M., Buriak, J., Jr., Cacciola, J., Alexander, R.S., Kettner, C.A., Knabb, R.M., Pruitt, J.R., Weber, P.C., and Wexler, R.R. (1998). Rational design of boropeptide thrombin inhibitors: beta, beta-dialkyl- phenethylglycine P2 analogs of DuP 714 with greater selectivity over complement factor I and an improved safety profile. Bioorg Med Chem Lett 8, 301–306.

    Article  PubMed  CAS  Google Scholar 

  • Figueiredo-Pereira, M.E., Berg, K.A., and Wilk, S. (1994). A new inhibitor of the chymotrypsin-like activity of the multicatalytic proteinase complex (20S proteasome) induces accumulation of ubiquitin- protein conjugates in a neuronal cell. J Neurochem 63, 1578–1581.

    Article  PubMed  CAS  Google Scholar 

  • Figueiredo-Pereira, M.E., Chen, W.E., Li, J., and Johdo, O. (1996). The antitumor drug aclacinomycin A, which inhibits the degradation of ubiquitinated proteins, shows selectivity for the chymotrypsin-like activity of the bovine pituitary 20S proteasome. J Biol Chem 271, 16455–16459.

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick, L.R., Khare, V., Small, J.S., and Koltun, W.A. (2006). Dextran sulfate sodium-induced colitis is associated with enhanced low molecular mass polypeptide 2 (LMP2) expression and is attenuated in LMP2 knockout mice. Dig Dis Sci 51, 1269–1276.

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick, L.R., Small, J.S., Poritz, L.S., McKenna, K.J., and Koltun, W.A. (2007). Enhanced intestinal expression of the proteasome subunit low molecular mass polypeptide 2 in patients with inflammatory bowel disease. Dis Colon Rectum 50, 337–348; discussion 348–350.

    Article  PubMed  Google Scholar 

  • Groll, M., Ditzel, L., Lowe, J., Stock, D., Bochtler, M., Bartunik, H.D., and Huber, R. (1997). Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386, 463–471.

    Article  PubMed  CAS  Google Scholar 

  • Groll, M., Kim, K.B., Kairies, N., Huber, R., and Crews, C.M. (2000). Crystal structure of epoxomicin:20S proteasome reveals a molecular basis for selectivity of α′,β′-epoxyketone proteasome inhibitors. J Am Chem Soc 122, 1237–1238.

    Article  CAS  Google Scholar 

  • Groll, M., Koguchi, Y., Huber, R., and Kohno, J. (2001). Crystal structure of the 20 S proteasome:TMC-95A complex: a non-covalent proteasome inhibitor. J Mol Biol 311, 543–548.

    Article  PubMed  CAS  Google Scholar 

  • Groll, M., Huber, R., and Potts, B.C. (2006). Crystal structures of Salinosporamide A (NPI-0052) and B (NPI-0047) in complex with the 20S proteasome reveal important consequences of beta-lactone ring opening and a mechanism for irreversible binding. J Am Chem Soc 128, 5136–5141.

    Article  PubMed  CAS  Google Scholar 

  • Hanada, M., Sugawara, K., Kaneta, K., Toda, S., Nishiyama, Y., Tomita, K., Yamamoto, H., Konishi, M., and Oki, T. (1992). Epoxomicin, a new antitumor agent of microbial origin. J Antibiot (Tokyo) 45, 1746–1752.

    CAS  Google Scholar 

  • Harvey, A.L. (1999). Medicines from nature: are natural products still relevant to drug discovery? Trends Pharmacol Sci 20, 196–198.

    Article  PubMed  CAS  Google Scholar 

  • Hershko, A., and Ciechanover, A. (1998). The ubiquitin system. Annu Rev Biochem 67, 425–479.

    Article  PubMed  CAS  Google Scholar 

  • Ho, Y.K., Bargagna-Mohan, P., Mohan, R., and Kim, K.B. (2007). LMP2-specific inhibitors: Novel chemical genetic tools for proteasome biology. Chem Biol 14, 419–430.

    Article  PubMed  CAS  Google Scholar 

  • Joazeiro, C.A., Anderson, K.C., and Hunter, T. (2006). Proteasome inhibitor drugs on the rise. Cancer Res 66, 7840–7842.

    Article  PubMed  CAS  Google Scholar 

  • Karin, M., and Ben-Neriah, Y. (2000). Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 18, 621–663.

    Article  PubMed  CAS  Google Scholar 

  • Kazi, A., Daniel, K.G., Smith, D.M., Kumar, N.B., and Dou, Q.P. (2003). Inhibition of the proteasome activity, a novel mechanism associated with the tumor cell apoptosis-inducing ability of genistein. Biochem Pharmacol 66, 965–976.

    Article  PubMed  CAS  Google Scholar 

  • Kessler, B.M., Tortorella, D., Altun, M., Kisselev, A.F., Fiebiger, E., Hekking, B.G., Ploegh, H.L., and Overkleeft, H.S. (2001). Extended peptide-based inhibitors efficiently target the proteasome and reveal overlapping specificities of the catalytic beta-subunits. Chem Biol 8, 913–929.

    Article  PubMed  CAS  Google Scholar 

  • Kim, K.B., and Crews, C.M. (2003). Natural product and synthetic proteasome inhibitors. In Cancer Drug Discovery and Development: Proteasome Inhibitors in Cancer Therapy, J. Adams, ed. (Totowa, NJ: Humana Press Inc.), pp. 47–63.

    Google Scholar 

  • King, R.W., Deshaies, R.J., Peters, J.M., and Kirschner, M.W. (1996). How proteolysis drives the cell cycle. Science 274, 1652–1659.

    Article  PubMed  CAS  Google Scholar 

  • Kisselev, A.F., and Goldberg, A.L. (2001). Proteasome inhibitors: from research tools to drug candidates. Chem Biol 8, 739–758.

    Article  PubMed  CAS  Google Scholar 

  • Kisselev, A.F., Callard, A., and Goldberg, A.L. (2006). Importance of the different proteolytic sites of the proteasome and the efficacy of inhibitors varies with the protein substrate. J Biol Chem 281, 8582–8590.

    Article  PubMed  CAS  Google Scholar 

  • Kloetzel, P.M. (2001). Antigen processing by the proteasome. Nat Rev Mol Cell Biol 2, 179–187.

    Article  PubMed  CAS  Google Scholar 

  • Koguchi, Y., Kohno, J., Nishio, M., Takahashi, K., Okuda, T., Ohnuki, T., and Komatsubara, S. (2000). TMC-95A, B, C, and D, novel proteasome inhibitors produced by Apiospora montagnei Sacc. TC 1093. Taxonomy, production, isolation, and biological activities. J Antibiot (Tokyo) 53, 105–109.

    CAS  Google Scholar 

  • Koguchi, Y., Kohno, J., Suzuki, S., Nishio, M., Takahashi, K., Ohnuki, T., and Komatsubara, S. (2000). TMC-86A, B and TMC-96, new proteasome inhibitors from Streptomyces sp. TC 1084 and Saccharothrix sp. TC 1094. II. Physico-chemical properties and structure determination. J Antibiot (Tokyo) 53, 63–65.

    CAS  Google Scholar 

  • Kohno, J., Koguchi, Y., Nishio, M., Nakao, K., Kuroda, M., Shimizu, R., Ohnuki, T., and Komatsubara, S. (2000). Structures of TMC-95A-D: novel proteasome inhibitors from Apiospora montagnei sacc. TC 1093. J Org Chem 65, 990–995.

    Article  PubMed  CAS  Google Scholar 

  • Loidl, G., Groll, M., Musiol, H.J., Huber, R., and Moroder, L. (1999a). Bivalency as a principle for proteasome inhibition. Proc Natl Acad Sci U S A 96, 5418–5422.

    Article  CAS  Google Scholar 

  • Loidl, G., Groll, M., Musiol, H.J., Ditzel, L., Huber, R., and Moroder, L. (1999b). Bifunctional inhibitors of the trypsin-like activity of eukaryotic proteasomes. Chem Biol 6, 197–204.

    Article  CAS  Google Scholar 

  • Loidl, G., Musiol, H.J., Groll, M., Huber, R., and Moroder, L. (2000). Synthesis of bivalent inhibitors of eucaryotic proteasomes. J Pept Sci 6, 36–46.

    Article  PubMed  CAS  Google Scholar 

  • Lowe, J., Stock, D., Jap, B., Zwickl, P., Baumeister, W., and Huber, R. (1995). Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 268, 533–539.

    Article  PubMed  CAS  Google Scholar 

  • Lu, C., Gallegos, R., Li, P., Xia, C.Q., Pusalkar, S., Uttamsingh, V., Nix, D., Miwa, G.T., and Gan, L.S. (2006). Investigation of drug-drug interaction potential of bortezomib in vivo in female Sprague-Dawley rats and in vitro in human liver microsomes. Drug Metab Dispos 34, 702–708.

    Article  PubMed  CAS  Google Scholar 

  • Meng, L., Kwok, B.H., Sin, N., and Crews, C.M. (1999a). Eponemycin exerts its antitumor effect through the inhibition of proteasome function. Cancer Res 59, 2798–2801.

    CAS  Google Scholar 

  • Meng, L., Mohan, R., Kwok, B.H., Elofsson, M., Sin, N., and Crews, C.M. (1999b). Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc Natl Acad Sci U S A 96, 10403–10408.

    Article  CAS  Google Scholar 

  • Myung, J., Kim, K.B., and Crews, C.M. (2001a). The ubiquitin-proteasome pathway and proteasome inhibitors. Med Res Rev 21, 245–273.

    Article  CAS  Google Scholar 

  • Myung, J., Kim, K.B., Lindsten, K., Dantuma, N.P., and Crews, C.M. (2001b). Lack of proteasome active site allostery as revealed by subunit-specific inhibitors. Mol Cell 7, 411–420.

    Article  CAS  Google Scholar 

  • Nam, S., Smith, D.M., and Dou, Q.P. (2001). Ester bond-containing tea polyphenols potently inhibit proteasome activity in vitro and in vivo. J Biol Chem 276, 13322–13330.

    Article  PubMed  CAS  Google Scholar 

  • Nazif, T., and Bogyo, M. (2001). Global analysis of proteasomal substrate specificity using positional-scanning libraries of covalent inhibitors. Proc Natl Acad Sci U S A 98, 2967–2972.

    Article  PubMed  CAS  Google Scholar 

  • Oinonen, C., and Rouvinen, J. (2000). Structural comparison of Ntn-hydrolases. Protein Sci 9, 2329–2337.

    Article  PubMed  CAS  Google Scholar 

  • Omura, S., Fujimoto, T., Otoguro, K., Matsuzaki, K., Moriguchi, R., Tanaka, H., and Sasaki, Y. (1991). Lactacystin, a novel microbial metabolite, induces neuritogenesis of 000neuroblastoma cells. J Antibiot (Tokyo) 44, 113–116.

    CAS  Google Scholar 

  • Orlowski, M. (1993). The multicatalytic proteinase complex (proteasome) and intracellular protein degradation: diverse functions of an intracellular particle. J Lab Clin Med 121, 187–189.

    PubMed  CAS  Google Scholar 

  • Orlowski, R., and Orlowski, M. (2006). Potent and specific immunoproteasome inhibitors United States Patent Application 20060241056.

    Google Scholar 

  • Orlowski, R.Z. (2005). The ubiquitin proteasome pathway from bench to bedside. Hematology (Am Soc Hematol Educ Program), 220–225.

    Google Scholar 

  • Ostrowska, H., Wojcik, C., Omura, S., and Worowski, K. (1997). Lactacystin, a specific inhibitor of the proteasome, inhibits human platelet lysosomal cathepsin A-like enzyme. Biochem Biophys Res Commun 234, 729–732.

    Article  PubMed  CAS  Google Scholar 

  • Ostrowska, H., Wojcik, C., Wilk, S., Omura, S., Kozlowski, L., Stoklosa, T., Worowski, K., and Radziwon, P. (2000). Separation of cathepsin A-like enzyme and the proteasome: evidence that lactacystin/beta-lactone is not a specific inhibitor of the proteasome. Int J Biochem Cell Biol 32, 747–757.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, J.T., Rasnick, D., Klaus, J.L., and Bromme, D. (1995). Vinyl sulfones as mechanism-based cysteine protease inhibitors. J Med Chem 38, 3193–3196.

    Article  PubMed  CAS  Google Scholar 

  • Rock, K.L., Gramm, C., Rothstein, L., Clark, K., Stein, R., Dick, L., Hwang, D., and Goldberg, A.L.(1994). Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78, 761–771.

    Article  PubMed  CAS  Google Scholar 

  • Ruiz, S., Krupnik, Y., Keating, M., Chandra, J., Palladino, M., and McConkey, D. (2006). The proteasome inhibitor NPI-0052 is a more effective inducer of apoptosis than bortezomib in lymphocytes from patients with chronic lymphocytic leukemia. Mol Cancer Ther 5, 1836–1843.

    Article  PubMed  CAS  Google Scholar 

  • Sadaghiani, A.M., Verhelst, S.H., and Bogyo, M. (2007). Tagging and detection strategies for activity-based proteomics. Curr Opin Chem Biol 11, 20–28.

    Article  PubMed  CAS  Google Scholar 

  • Sekizawa, R., Momose, I., Kinoshita, N., Naganawa, H., Hamada, M., Muraoka, Y., Iinuma, H., and Takeuchi, T. (2001). Isolation and structural determination of phepropeptins A, B, C, and D, new proteasome inhibitors, produced by Streptomyces sp. J Antibiot (Tokyo) 54, 874–881.

    CAS  Google Scholar 

  • Sin, N., Meng, L., Auth, H., and Crews, C.M. (1998). Eponemycin analogues: syntheses and use as probes of angiogenesis. Bioorg Med Chem 6, 1209–1217.

    Article  PubMed  CAS  Google Scholar 

  • Sin, N., Kim, K.B., Elofsson, M., Meng, L., Auth, H., Kwok, B.H., and Crews, C.M. (1999). Total synthesis of the potent proteasome inhibitor epoxomicin: a useful tool for understanding proteasome biology. Bioorg Med Chem Lett 9, 2283–2288.

    Article  PubMed  CAS  Google Scholar 

  • Spaltenstein, A., Leban, J.J., Huang, J.J., Reinhardt, K.R., Viveros, O.H.S.J., and Crouch, R. (1996). Design and synthesis of novel protease inhibitors. Tripeptide α′,β′-epoxyketones as nanomolar inactivators of proteasome. Tetrahedron Lett. 37, 1343–1346.

    Article  CAS  Google Scholar 

  • Sugawara, K., Hatori, M., Nishiyama, Y., Tomita, K., Kamei, H., Konishi, M., and Oki, T. (1990). Eponemycin, a new antibiotic active against B16 melanoma. I. Production, isolation, structure and biological activity. J Antibiot (Tokyo) 43, 8–18.

    CAS  Google Scholar 

  • Tan, G., Gyllenhaal, C., and Soejarto, D.D. (2006). Biodiversity as a source of anticancer drugs. Curr Drug Targets 7, 265–277.

    Article  PubMed  CAS  Google Scholar 

  • van Swieten, P.F., Samuel, E., Hernandez, R.O., van den Nieuwendijk, A.M., Leeuwenburgh, M.A., van der Marel, G.A., Kessler, B.M., Overkleeft, H.S., and Kisselev, A.F. (2007). A cell-permeable inhibitor and activity-based probe for the caspase-like activity of the proteasome. Bioorg Med Chem Lett 17, 3402–3405.

    Article  PubMed  CAS  Google Scholar 

  • Verdoes, M., Berkers, C.R., Florea, B.I., van Swieten, P.F., Overkleeft, H.S., and Ovaa, H. (2006a). Chemical proteomics profiling of proteasome activity. Methods Mol Biol 328, 51–69.

    CAS  Google Scholar 

  • Verdoes, M., Florea, B.I., Menendez-Benito, V., Maynard, C.J., Witte, M.D., van der Linden, W.A., van den Nieuwendijk, A.M., Hofmann, T., Berkers, C.R., van Leeuwen, F.W., Groothuis, T.A., Leeuwenburgh, M.A., Ovaa, H., Neefjes, J.J., Filippov, D.V., van der Marel, G.A., Dantuma, N.P., and Overkleeft, H.S. (2006b). A fluorescent broad-spectrum proteasome inhibitor for labeling proteasomes in vitro and in vivo. Chem Biol 13, 1217–1226.

    Article  CAS  Google Scholar 

  • Verdoes, M., Hillaert, U., Florea, B.I., Sae-Heng, M., Risseeuw, M.D., Filippov, D.V., van der Marel, G.A., and Overkleeft, H.S. (2007). Acetylene functionalized BODIPY dyes and their application in the synthesis of activity based proteasome probes. Bioorg Med Chem Lett 17, 6169–6171.

    Article  PubMed  CAS  Google Scholar 

  • Verma, R., and Deshaies, R.J. (2000). A proteasome howdunit: the case of the missing signal. Cell 101, 341–344.

    Article  PubMed  CAS  Google Scholar 

  • Wilk, S., and Figueiredo-Pereira, M.E. (1993). Synthetic inhibitors of the multicatalytic proteinase complex (proteasome). Enzyme Protein 47, 306–313.

    PubMed  CAS  Google Scholar 

  • Wilk, S., and Orlowski, M. (1983a). Evidence that pituitary cation-sensitive neutral endopeptidase is a multicatalytic protease complex. J Neurochem 40, 842–849.

    Article  CAS  Google Scholar 

  • Wilk, S., and Orlowski, M. (1983b). Inhibition of rabbit brain prolyl endopeptidase by n-benzyloxycarbonyl-prolyl-prolinal, a transition state aldehyde inhibitor. J Neurochem 41, 69–75.

    Article  CAS  Google Scholar 

  • Yang, H., Chen, D., Cui, Q.C., Yuan, X., and Dou, Q.P. (2006). Celastrol, a triterpene extracted from the Chinese “Thunder of God Vine,” is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice. Cancer Res 66, 4758–4765.

    Article  PubMed  CAS  Google Scholar 

  • Yang, H., Shi, G., and Dou, Q.P. (2007). The tumor proteasome is a primary target for the natural anticancer compound Withaferin A isolated from “Indian winter cherry”. Mol Pharmacol 71, 426–437.

    Article  PubMed  CAS  Google Scholar 

  • Yewdell, J.W. (2005). Immunoproteasomes: regulating the regulator. Proc Natl Acad Sci U S A 102, 9089–9090.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Eric Rubin Kathleen Sakamoto

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wehenkel, M., Ho, Y., Kim, KB. (2009). Proteasome Inhibitors. In: Rubin, E., Sakamoto, K. (eds) Modulation of Protein Stability in Cancer Therapy. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69147-3_7

Download citation

Publish with us

Policies and ethics