Skip to main content

Ovarian Cancer: Linking Genomics to New Target Discovery and Molecular Markers — The Way Ahead

  • Chapter
Hormonal Carcinogenesis V

Epithelial ovarian cancer (EOC) is the 4th leading cause of cancer deaths among USA women and the most common cause of death from gynecologic cancers (1,2). It arises from ovarian surface epithelial (OSE) cells, and is currently classified by surgical and histological appearance (see Table 1), although the predictive value of this morphologic classification is limited (3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jemal A, et al. (2003) Cancer statistics, 2003. CA Cancer J Clin 53:5–26.

    Article  PubMed  Google Scholar 

  2. Cannistra SA (2004) Cancer of the ovary. N Engl J Med 351:2519–2529.

    Article  PubMed  CAS  Google Scholar 

  3. Hennessy BT, Mills GB, et al. (2006) Ovarian cancer: Homeobox genes, autocrine/paracrine growth, and kinase signaling. Int J Biochem Cell Biol 38:1450–1456.

    Article  PubMed  CAS  Google Scholar 

  4. Taylor HS, Vanden Heuvel GB, Igarashi P (1997) A conserved Hox axis in the mouse and human female reproductive system: late establishment and persistent adult expression of the Hoxa cluster genes. Biol Reprod 57:1338–1345.

    Article  PubMed  CAS  Google Scholar 

  5. International Collaborative Ovarian Neoplasm Group (2002) Paclitaxel plus carboplatin versus standard chemotherapy with either single-agent carboplatin or cyclophosphamide, doxorubicin, and cisplatin in women with ovarian cancer: the ICON3 randomised trial. Lancet 360:505–515.

    Article  Google Scholar 

  6. Suzuki S, Moore III DH, Ginzinger DG, et al. (2000) An approach to analysis of large-scale correlations between genome changes and clinical endpoints in ovarian cancer. Cancer Res 60:5382–5385.

    PubMed  CAS  Google Scholar 

  7. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70.

    Article  PubMed  CAS  Google Scholar 

  8. Levine DA, Bogomolniy F, Yee CJ, et al. (2005) Frequent mutation of the PIK3CA gene in ovarian and breast cancers. Clin Cancer Res 11:2875–2878.

    Article  PubMed  CAS  Google Scholar 

  9. Campbell IG, Russell SE, Choong DY, et al. (2004) Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res 64:7678–7681.

    Article  PubMed  CAS  Google Scholar 

  10. Shih IeM, Kurman RJ (2004) Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis. Am J Pathol 164:1511–1518.

    PubMed  CAS  Google Scholar 

  11. Narod SA, Boyd J (2002) Current understanding of the epidemiology and clinical implications of BRCA1 and BRCA2 mutations for ovarian cancer. Curr Opin Obstet Gynecol 14:19–26.

    Article  PubMed  Google Scholar 

  12. Stephens P, Edkins S, Davies H, et al. (2005) A screen of the complete protein kinase gene family identifies diverse patterns of somatic mutations in human breast cancer. Nat Genet 37:590–592.

    Article  PubMed  CAS  Google Scholar 

  13. Sjoblom T, Jones S, Wood LD, et al. (2006) The Consensus Coding Sequences of Human Breast and Colorectal Cancers. Science 314:268–274.

    Article  PubMed  Google Scholar 

  14. Orsulic S, Li Y, Soslow RA, et al. (2002). Induction of ovarian cancer by defined multiple genetic changes in a mouse model system. Cancer Cell 1:53–62.

    Article  PubMed  CAS  Google Scholar 

  15. Dinulescu DM, Ince TA, Quade BJ, et al. (2005) Role of K-ras and Pten in the development of mouse models of endometriosis and endometrioid ovarian cancer. Nat Med 11:63–70.

    Article  PubMed  CAS  Google Scholar 

  16. Yang G, Rosen DG, Mercado-Uribe I, et al. (2007) Knockdown of p53 combined with expression of the catalytic subunit of telomerase is sufficient to immortalize primary human ovarian surface epithelial cells. Carcinogenesis 28:174–182.

    Article  PubMed  CAS  Google Scholar 

  17. Alvero AB, Fishman DA, Qumsiyeh MB, et al. (2004) Telomerase prolongs the lifespan of normal human ovarian surface epithelial cells without inducing neoplastic phenotype. J Soc Gynecol Investig 11:553–561.

    Article  PubMed  CAS  Google Scholar 

  18. Auersperg N, Wong AS, Choi KC, et al. (2001) Ovarian surface epithelium: biology, endocrinology and pathology. Endocr Rev 22:255–288.

    Article  PubMed  CAS  Google Scholar 

  19. Zeimet AG, Marth C (2003) Why did p53 gene therapy fail in ovarian cancer? Lancet Oncol 4:415–422.

    Article  PubMed  CAS  Google Scholar 

  20. Wang TL, Maierhofer C, Speicher MR, et al. (2002) Digital karyotyping. Proc Natl Acad Sci USA 99:16156–16161.

    Article  PubMed  CAS  Google Scholar 

  21. Shih IeM, Sheu JJ, Santillan A, et al. (2005) Amplification of a chromatin remodeling gene, Rsf-1/HBXAP, in ovarian carcinoma. Proc Natl Acad Sci USA 102:14004–14009.

    Article  PubMed  CAS  Google Scholar 

  22. Hennessy BT, Nanjunden M, Cheng KW, Nolden L, Mills GB (2006) Ovarian cancer: identification of remodeling and spacing factor 1 (rsf-1, HBXAP) at chromosome 11q13 as a putative oncogene in ovarian cancer (News and Commentary). Eur J Hum Genet 14:381–383.

    Article  PubMed  CAS  Google Scholar 

  23. Watanabe T, Imoto I, Kosugi Y, et al. (2001) A novel amplification at 17q21–23 in ovarian cancer cell lines detected by comparative genomic hybridization. Gynecol Oncol 81:172–177.

    Article  PubMed  CAS  Google Scholar 

  24. Shayesteh L, Lu Y, Kuo WL, et al. (1999) PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet 21:99–102.

    Article  PubMed  CAS  Google Scholar 

  25. Cheng KW, Lahad JP, Kuo WL, et al. (2004) The Rab 25 small GTPase determines aggressiveness of ovarian and breast cancers. Nat Med 10:1251–1256.

    Article  PubMed  CAS  Google Scholar 

  26. Eder A, Sui X, Rosen D, et al. (2005) Atypical PKCiota contributes to poor prognosis through loss of apical-basal polarity and cyclin E overexpression in ovarian cancer. Proc Natl Acad Sci USA 102:12519–12524.

    Article  PubMed  CAS  Google Scholar 

  27. Brown LA, Irving J, Parker R, et al. (2006) Amplification of EMSY, a novel oncogene on 11q13, in high grade ovarian surface epithelial carcinomas. Gynecol Oncol 100:264–70.

    Article  PubMed  CAS  Google Scholar 

  28. Hughes-Davies L, Huntsman D, Ruas M, et al. (2003) EMSY links the BRCA2 pathway to sporadic breast and ovarian cancer. Cell 115:523–535.

    Article  PubMed  CAS  Google Scholar 

  29. Anand N, Murthy S, Amann G, et al. (2002) Protein elongation factor EEF1A2 is a putative oncogene in ovarian cancer. Nat Genet 31:301–305.

    PubMed  CAS  Google Scholar 

  30. Schraml P, Schwerdtfeger G, Burkhalter F, et al. (2003) Combined array comparative genomic hybridization and tissue microarray analysis suggest PAK1 at 11q13.5–q14 as a critical oncogene target in ovarian carcinoma. Am J Pathol 163:985–992.

    PubMed  CAS  Google Scholar 

  31. Li P, Maines-Bandiera S, Kuo WL, et al. (2007) Multiple roles of the candidate oncogene znf217 in ovarian epithelial neoplastic progression. Int J Cancer 120:1863–73.

    Article  PubMed  CAS  Google Scholar 

  32. Kamikihara T, Arima T, Kato K, et al. (2005) Epigenetic silencing of the imprinted gene ZAC by DNA methylation is an early event in the progression of human ovarian cancer. Int J Cancer 115:690–700.

    Article  PubMed  CAS  Google Scholar 

  33. Strathdee G, Appleton K, Illand M, et al. (2001) Primary ovarian carcinomas display multiple methylator phenotypes involving known tumor suppressor genes. Am J Pathol 158:1121–1127.

    PubMed  CAS  Google Scholar 

  34. Wei SH, Balch C, Paik HH, et al. (2006) Prognostic DNA methylation biomarkers in ovarian cancer. Clin Cancer Res 12:2788–2794.

    Article  PubMed  CAS  Google Scholar 

  35. Wright JD, Hagemann A, Rader JS, et al. (2006) Bevacizumab combination therapy in recurrent, platinum-refractory, epithelial ovarian carcinoma: a retrospective analysis. Cancer 107:83–89.

    Article  PubMed  CAS  Google Scholar 

  36. Smith DI (2002) Transcriptional profiling develops molecular signatures for ovarian tumors. Cytometry 47:60–62.

    Article  PubMed  CAS  Google Scholar 

  37. Nanjundan M, Zhang F, Schmandt R, Smith-McCune K, Mills GB (2007) Identification of a novel splice variant of AML1b in ovarian cancer patients conferring loss of wild-type tumor suppressive functions. Oncogene 26:2574–84.

    Article  PubMed  CAS  Google Scholar 

  38. Charboneau L, Scott H, Chen T, et al. (2002) Utility of reverse phase protein arrays: applications to signalling pathways and human body arrays. Brief Funct Genomic Proteomic 1:305–315.

    Article  PubMed  CAS  Google Scholar 

  39. Sheehan KM, Calvert VS, Kay EW, et al. (2005) Use of reverse phase protein microarrays and reference standard development for molecular network analysis of metastatic ovarian carcinoma. Mol Cell Proteomics 4:346–355.

    Article  PubMed  CAS  Google Scholar 

  40. Tibes R, Qiu Y, Lu Y, et al. (2006) Reverse phase protein array (RPPA): validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoetic stem cells (HSC). Mol Cancer Ther 5:2512–21.

    Article  PubMed  CAS  Google Scholar 

  41. Duffy MJ (2006) Serum tumor markers in breast cancer: are they of clinical value? Clin Chem 52:345–351.

    Article  PubMed  CAS  Google Scholar 

  42. Kozak KR, Su F, Whitelegge JP, et al. (2005) Characterization of serum biomarkers for detection of early stage ovarian cancer. Proteomics 5:4589–4596.

    Article  PubMed  CAS  Google Scholar 

  43. Judson PL, Geller MA, Bliss RL, et al. (2003) Preoperative detection of peripherally circulating cancer cells and its prognostic significance in ovarian cancer. Gynecol Oncol 91:389–394.

    Article  PubMed  Google Scholar 

  44. Swisher EM, Wollan M, Mahtani SM, et al. (2005) Specific p53 sequences in blood and peritoneal fluid of women with epithelial ovarian cancer. Am J Obstet Gynecol 193:662–667.

    Article  PubMed  CAS  Google Scholar 

  45. Cristofanilli M, Budd GT, Ellis MJ, et al. (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. New Engl J Med 351:781–791.

    Article  PubMed  CAS  Google Scholar 

  46. Muller V, Stahmann N, Riethdorf S, et al. (2005) Circulating tumor cells in breast cancer: correlation to bone marrow micrometastases, heterogeneous response to systemic therapy and low proliferative activity. Clin Can Res 11:3678–3685.

    Article  Google Scholar 

  47. Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB (2005) Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 4:988–1004.

    Article  PubMed  CAS  Google Scholar 

  48. Wang X, Gorlitsky R, Almeida JS (2005) From XML to RDF: how semantic web technologies will change the design of ‘omic’ standards. Nat Biotechnol 23:1099–1103.

    Article  PubMed  CAS  Google Scholar 

  49. Almeida JS, C Chen, R Gorlitsky, et al. (2006) Data integration gets ‘Sloppy’. Nat Biotechnol 24:1070–1071.

    Article  PubMed  CAS  Google Scholar 

  50. Cheng W, Liu J, Yoshida H, et al. (2005) Lineage infidelity of epithelial ovarian cancers is controlled by HOX genes that specify regional identity in the reproductive tract. Nat Med 11:531–537.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Hennessy, B.T. et al. (2008). Ovarian Cancer: Linking Genomics to New Target Discovery and Molecular Markers — The Way Ahead. In: Li, J.J., Li, S.A., Mohla, S., Rochefort, H., Maudelonde, T. (eds) Hormonal Carcinogenesis V. Advances in Experimental Medicine and Biology, vol 617. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69080-3_3

Download citation

Publish with us

Policies and ethics