Skip to main content

Ewing’s Sarcoma Family of Tumors: Molecular Targets Need Arrows

  • Chapter
  • First Online:
Molecularly Targeted Therapy for Childhood Cancer

Abstract

Ewing’s Sarcoma Family of Tumors (ESFT) are highly malignant tumors of bone and soft tissue that occur in children, adolescents, and young adults (Arndt and Crist 1999; Toretsky 2003). Currently, the standard therapy for ESFT patients is a five-drug regimen that consists of alternating cycles of doxorubicin/vincristine/cyclophosphamide and etoposide/ifosfamide over the course of approximately 9 months. Side effects include nausea, vomiting, and severe hematologic cytopenias, and patients often develop life-threatening infections while receiving chemotherapy. Patients who present with localized ESFT have approximately 70% disease-free survival. Patients who present with metastatic ESFT have a poor prognosis, reporting only 20% disease-free survival despite receiving intensive therapy (Grier et al. 2003). These clinical response rates have persisted for the past decade, even after patients received dose-intensifying chemotherapy and bone-marrow transplantation. Current treatment-related morbidity includes cardiac, musculoskeletal, and second malignancies (Fuchs et al. 2003). We need to discover novel therapeutic approaches to reduce treatment-related morbidity as well as improve overall survival. Novel therapies should exploit tumor vulnerability based on ESFT ontogeny, oncogenesis, and tumor-maintenance pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abaan, O. D., Levenson, A., Khan, O., Furth, P. A., Uren, A. and Toretsky, J. A., 2005. PTPL1 is a direct transcriptional target of EWS-FLI1 and modulates Ewing’s sarcoma tumorigenesis. Oncogene 24:2715–2722.

    PubMed  CAS  Google Scholar 

  • Abadie, A., Besancon, F. and Wietzerbin, J., 2004. Type I interferon and TNFalpha cooperate with type II interferon for TRAIL induction and triggering of apoptosis in SK-N-MC EWING tumor cells. Oncogene 23:4911–4920.

    PubMed  CAS  Google Scholar 

  • Abadie, A. and Wietzerbin, J., 2003. Involvement of TNF-related apoptosis-inducing ligand (TRAIL) induction in interferon gamma-mediated apoptosis in Ewing tumor cells. Ann N Y Acad Sci 1010:117–120.

    PubMed  CAS  Google Scholar 

  • Ambros, I. M., Ambros, P. F., Strehl, S., Kovar, H., Gadner, H. and Salzer-Kuntschik, M., 1991. MIC2 is a specific marker for Ewing’s sarcoma and peripheral primitive neuroectodermal tumors. Evidence for a common histogenesis of Ewing’s sarcoma and peripheral primitive neuroectodermal tumors from MIC2 expression and specific chromosome aberration. Cancer 67:1886–1893.

    PubMed  CAS  Google Scholar 

  • Anderson, S. F., Schlegel, B. P., Nakajima, T., Wolpin, E. S. and Parvin, J. D., 1998. BRCA1 protein is linked to the RNA polymerase II holoenzyme complex via RNA helicase A. Nat Genet 19:254–256.

    PubMed  CAS  Google Scholar 

  • Aratani, S., Fujii, R., Oishi, T., Fujita, H., Amano, T., Ohshima, T., Hagiwara, M., Fukamizu, A. and Nakajima, T., 2001. Dual roles of RNA helicase A in CREB-dependent transcription. Mol Cell Biol 21:4460–4469.

    PubMed  CAS  Google Scholar 

  • Arndt, C. A. and Crist, W. M., 1999. Common musculoskeletal tumors of childhood and adolescence. N Engl J Med 341:342–352.

    PubMed  CAS  Google Scholar 

  • Aryee, D. N., Kreppel, M., Bachmaier, R., Uren, A., Muehlbacher, K., Wagner, S., Breiteneder, H., Ban, J., Toretsky, J. A. and Kovar, H., 2006. Single-chain antibodies to the EWS NH2 terminus structurally discriminate between intact and chimeric EWS in Ewing’s sarcoma and interfere with the transcriptional activity of EWS in vivo. Cancer Res 66:9862–9869.

    PubMed  CAS  Google Scholar 

  • Ashkenazi, A., 2002. Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer 2:420–430.

    PubMed  CAS  Google Scholar 

  • Baer, C., Nees, M., Breit, S., Selle, B., Kulozik, A. E., Schaefer, K. L., Braun, Y., Wai, D. and Poremba, C., 2004. Profiling and functional annotation of mRNA gene expression in pediatric rhabdomyosarcoma and Ewing’s sarcoma. Int J Cancer 110:687–694.

    PubMed  CAS  Google Scholar 

  • Baliko, F., Bright, T., Poon, R., Cohen, B., Egan, S. E. and Alman, B. A., 2007. Inhibition of notch signaling induces neural differentiation in Ewing sarcoma. Am J Pathol 170:1686–1694.

    PubMed  CAS  Google Scholar 

  • Baserga, R., 1995. The insulin-like growth factor I receptor: a key to tumor growth? Cancer Res 55:249–252.

    PubMed  CAS  Google Scholar 

  • Beauchamp, E., Bulut, G., Abaan, O., Chen, K., Merchant, A., Matsui, W., Endo, Y., Rubin, J. S., Toretsky, J. and Uren, A., 2009. GLI1 is a direct transcriptional target of EWS-FLI1 oncoprotein. J Biol Chem 284:9074–9082.

    PubMed  CAS  Google Scholar 

  • Begent, R. H., Verhaar, M. J., Chester, K. A., Casey, J. L., Green, A. J., Napier, M. P., Hope-Stone, L. D., Cushen, N., Keep, P. A., Johnson, C. J., Hawkins, R. E., Hilson, A. J. and Robson, L., 1996. Clinical evidence of efficient tumor targeting based on single-chain Fv antibody selected from a combinatorial library. Nat Med 2:979–984.

    PubMed  CAS  Google Scholar 

  • Benini, S., Manara, M. C., Baldini, N., Cerisano, V., Massimo, S., Mercuri, M., Lollini, P. L., Nanni, P., Picci, P. and Scotlandi, K., 2001. Inhibition of insulin-like growth factor I receptor increases the antitumor activity of doxorubicin and vincristine against Ewing’s sarcoma cells. Clin Cancer Res 7:1790–1797.

    PubMed  CAS  Google Scholar 

  • Bertolotti, A., Melot, T., Acker, J., Vigneron, M., Delattre, O. and Tora, L., 1998. EWS, but not EWS-FLI-1, is associated with both TFIID and RNA polymerase II: interactions between two members of the TET family, EWS and hTAFII68, and subunits of TFIID and RNA polymerase II complexes. Mol Cell Biol 18:1489–1497.

    PubMed  CAS  Google Scholar 

  • Bond, M., Bernstein, M. L., Pappo, A., Schultz, K. R., Krailo, M., Blaney, S. M. and Adamson, P. C., 2007. A phase II study of imatinib mesylate in children with refractory or relapsed solid tumors: a children’s oncology group study. Pediatr Blood Cancer 50(2):254–258

    Google Scholar 

  • Bozzi, F., Tamborini, E., Negri, T., Pastore, E., Ferrari, A., Luksch, R., Casanova, M., Pierotti, M. A., Bellani, F. F. and Pilotti, S., 2007. Evidence for activation of KIT, PDGFRalpha, and PDGFRbeta receptors in the Ewing sarcoma family of tumors. Cancer 109:1638–1645.

    PubMed  CAS  Google Scholar 

  • Braun, B. S., Frieden, R., Lessnick, S. L., May, W. A. and Denny, C. T., 1995. Identification of target genes for the Ewing’s sarcoma EWS/FLI fusion protein by representational difference analysis. Mol Cell Biol 15:4623–4630.

    PubMed  CAS  Google Scholar 

  • Braunreiter, C. L., Hancock, J. D., Coffin, C. M., Boucher, K. M. and Lessnick, S. L., 2006. Expression of EWS-ETS fusions in NIH3T3 cells reveals significant differences to Ewing’s sarcoma. Cell Cycle 5:2753–2759.

    PubMed  CAS  Google Scholar 

  • Butler, A. A., Yakar, S., Gewolb, I. H., Karas, M., Okubo, Y. and LeRoith, D., 1998. Insulin-like growth factor-I receptor signal transduction: at the interface between physiology and cell biology. Comp Biochem Physiol B Biochem Mol Biol 121:19–26.

    PubMed  CAS  Google Scholar 

  • Castillero-Trejo, Y., Eliazer, S., Xiang, L., Richardson, J. A. and Ilaria, R. L., Jr., 2005. Expression of the EWS/FLI-1 oncogene in murine primary bone-derived cells Results in EWS/FLI-1-dependent, Ewing sarcoma-like tumors. Cancer Res 65:8698–8705.

    PubMed  CAS  Google Scholar 

  • Cavazzana, A., 1994. [The recent progress of biology in pediatric oncology (editorial)]. Pediatr Med Chir 16:197–199.

    PubMed  CAS  Google Scholar 

  • Chan, D., Wilson, T. J., Xu, D., Cowdery, H. E., Sanij, E., Hertzog, P. J. and Kola, I., 2003. Transformation induced by Ewing’s sarcoma associated EWS/FLI-1 is suppressed by KRAB/FLI-1. Br J Cancer 88:137–145.

    PubMed  CAS  Google Scholar 

  • Chansky, H. A., Barahmand-Pour, F., Mei, Q., Kahn-Farooqi, W., Zielinska-Kwiatkowska, A., Blackburn, M., Chansky, K., Conrad, E. U., III, Bruckner, J. D., Greenlee, T. K. and Yang, L., 2004. Targeting of EWS/FLI-1 by RNA interference attenuates the tumor phenotype of Ewing’s sarcoma cells in vitro. J Orthop Res 22:910–917.

    PubMed  CAS  Google Scholar 

  • Chansky, H. A., Hu, M., Hickstein, D. D. and Yang, L., 2001. Oncogenic TLS/ERG and EWS/Fli-1 fusion proteins inhibit RNA splicing mediated by YB-1 protein. Cancer Res 61:3586–3590.

    PubMed  CAS  Google Scholar 

  • Codrington, R., Pannell, R., Forster, A., Drynan, L. F., Daser, A., Lobato, N., Metzler, M. and Rabbitts, T. H., 2005. The Ews-ERG fusion protein can initiate neoplasia from lineage-committed haematopoietic cells. PLoS Biol 3:e242.

    PubMed  Google Scholar 

  • Collini, P., Sampietro, G., Bertulli, R., Casali, P. G., Luksch, R., Mezzelani, A., Sozzi, G. and Pilotti, S., 2001. Cytokeratin immunoreactivity in 41 cases of ES/PNET confirmed by molecular diagnostic studies. Am J Surg Pathol 25:273–274.

    PubMed  CAS  Google Scholar 

  • de Alava, E., Kawai, A., Healey, J. H., Fligman, I., Meyers, P. A., Huvos, A. G., Gerald, W. L., Jhanwar, S. C., Argani, P., Antonescu, C. R., Pardo-Mindan, F. J., Ginsberg, J., Womer, R., Lawlor, E. R., Wunder, J., Andrulis, I., Sorensen, P. H., Barr, F. G. and Ladanyi, M., 1998. EWS-FLI1 fusion transcript structure is an independent determinant of prognosis in Ewing’s sarcoma. J Clin Oncol 16:1248–1255.

    PubMed  Google Scholar 

  • Deneen, B. and Denny, C. T., 2001. Loss of p16 pathways stabilizes EWS/FLI1 expression and complements EWS/FLI1 mediated transformation. Oncogene 20:6731–6741.

    PubMed  CAS  Google Scholar 

  • Deneen, B., Hamidi, H. and Denny, C. T., 2003. Functional analysis of the EWS/ETS target gene uridine phosphorylase. Cancer Res 63:4268–4274.

    PubMed  CAS  Google Scholar 

  • Denzin, L. K., Whitlow, M. and Voss, E. W., Jr., 1991. Single-chain site-specific mutations of fluorescein-amino acid contact residues in high affinity monoclonal antibody 4-4-20. J Biol Chem 266:14095–14103.

    PubMed  CAS  Google Scholar 

  • Dobson, C. L., Warren, A. J., Pannell, R., Forster, A., Lavenir, I., Corral, J., Smith, A. J. and Rabbitts, T. H., 1999. The mll-AF9 gene fusion in mice controls myeloproliferation and specifies acute myeloid leukaemogenesis. EMBO J 18:3564–3574.

    PubMed  CAS  Google Scholar 

  • Dohjima, T., Lee, N. S., Li, H., Ohno, T. and Rossi, J. J., 2003. Small interfering RNAs expressed from a Pol III promoter suppress the EWS/Fli-1 transcript in an Ewing sarcoma cell line. Mol Ther 7:811–816.

    PubMed  CAS  Google Scholar 

  • Doolittle, R. F., Hunkapiller, M. W., Hood, L. E., Devare, S. G., Robbins, K. C., Aaronson, S. A. and Antoniades, H. N., 1983. Simian sarcoma virus onc gene, v-sis, is derived from the gene (or genes) encoding a platelet-derived growth factor. Science 221(4607):275–277.

    PubMed  CAS  Google Scholar 

  • DuBois, S. G., Krailo, M. D., Lessnick, S. L., Smith, R., Chen, Z., Marina, N., Grier, H. E. and Stegmaier, K., 2009. Phase II study of intermediate-dose cytarabine in patients with relapsed or refractory Ewing sarcoma: a report from the Children’s Oncology Group. Pediatr Blood Cancer 52:324–327.

    PubMed  Google Scholar 

  • Duiker, E. W., Mom, C. H., de Jong, S., Willemse, P. H., Gietema, J. A., van der Zee, A. G. and de Vries, E. G., 2006. The clinical trail of TRAIL. Eur J Cancer 42:2233–2240.

    PubMed  CAS  Google Scholar 

  • Dworzak, M. N., Fritsch, G., Buchinger, P., Fleischer, C., Printz, D., Zellner, A., Schollhammer, A., Steiner, G., Ambros, P. F. and Gadner, H., 1994. Flow cytometric assessment of human MIC2 expression in bone marrow, thymus, and peripheral blood. Blood 83:415–425.

    PubMed  CAS  Google Scholar 

  • Eliazer, S., Spencer, J., Ye, D., Olson, E. and Ilaria, R. L., Jr., 2003. Alteration of mesodermal cell differentiation by EWS/FLI-1, the oncogene implicated in Ewing’s sarcoma. Mol Cell Biol 23:482–492.

    PubMed  CAS  Google Scholar 

  • Erkizan, V., Kong, Y., Merchant, M. S., Schlottman, S., Barber, J., Abaan, O. D., Chou, T., Dakshanamurthy, S., Brown, M. L., Uren, A. and Toretsky, J., 2009. Small molecule selected to disrupt mutant transcription factor EWS-FLI1 interaction with RNA Helicase A inhibits Ewing’s Sarcoma. Nature Medicine 15(7):750–756.

    PubMed  CAS  Google Scholar 

  • Ewing, J., 1921. Diffuse endothelioma of bone. Proc N Y Pathol Soc 21:17.

    Google Scholar 

  • Fantl, W. J., Johnson, D. E. and Williams, L. T., 1993. Signalling by receptor tyrosine kinases. Annu Rev Biochem 62:453–481.

    PubMed  CAS  Google Scholar 

  • Fellinger, E. J., Garin-Chesa, P., Triche, T. J., Huvos, A. G. and Rettig, W. J., 1991. Immunohistochemical analysis of Ewing’s sarcoma cell surface antigen p30/32MIC2. Am J Pathol 139:317–325.

    PubMed  CAS  Google Scholar 

  • Fesik, S. W., 2005. Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer 5:876–885.

    PubMed  CAS  Google Scholar 

  • Forster, A., Pannell, R., Drynan, L. F., Codrington, R., Daser, A., Metzler, M., Lobato, M. N. and Rabbitts, T. H., 2005. The invertor knock-in conditional chromosomal translocation mimic. Nat Methods 2:27–30.

    PubMed  CAS  Google Scholar 

  • Fuchs, B., Inwards, C. Y. and Janknecht, R., 2004. Vascular endothelial growth factor expression is up-regulated by EWS-ETS oncoproteins and Sp1 and may represent an independent predictor of survival in Ewing’s sarcoma. Clin Cancer Res 10:1344–1353.

    PubMed  CAS  Google Scholar 

  • Fuchs, B., Valenzuela, R. G., Inwards, C., Sim, F. H. and Rock, M. G., 2003. Complications in long-term survivors of Ewing sarcoma. Cancer 98:2687–2692.

    PubMed  Google Scholar 

  • Fukuma, M., Okita, H., Hata, J. and Umezawa, A., 2003. Upregulation of Id2, an oncogenic helix-loop-helix protein, is mediated by the chimeric EWS/ets protein in Ewing sarcoma. Oncogene 22:1–9.

    PubMed  CAS  Google Scholar 

  • Gill, Z. P., Perks, C. M., Newcomb, P. V. and Holly, J. M., 1997. Insulin-like growth factor-binding protein (IGFBP-3) predisposes breast cancer cells to programmed cell death in a non-IGF-dependent manner. J Biol Chem 272:25602–25607.

    PubMed  CAS  Google Scholar 

  • Girnita, L., Girnita, A., Wang, M., Meis-Kindblom, J. M., Kindblom, L. G. and Larsson, O., 2000. A link between basic fibroblast growth factor (bFGF) and EWS/FLI-1 in Ewing’s sarcoma cells. Oncogene 19:4298–4301.

    PubMed  CAS  Google Scholar 

  • Grier, H. E., Krailo, M. D., Tarbell, N. J., Link, M. P., Fryer, C. J., Pritchard, D. J., Gebhardt, M. C., Dickman, P. S., Perlman, E. J., Meyers, P. A., Donaldson, S. S., Moore, S., Rausen, A. R., Vietti, T. J. and Miser, J. S., 2003. Addition of ifosfamide and etoposide to standard chemotherapy for Ewing’s sarcoma and primitive neuroectodermal tumor of bone. N Engl J Med 348:694–701.

    PubMed  CAS  Google Scholar 

  • Gu, M., Antonescu, C. R., Guiter, G., Huvos, A. G., Ladanyi, M. and Zakowski, M. F., 2000. Cytokeratin immunoreactivity in Ewing’s sarcoma: prevalence in 50 cases confirmed by molecular diagnostic studies. Am J Surg Pathol 24:410–416.

    PubMed  CAS  Google Scholar 

  • Guan, H., Zhou, Z., Wang, H., Jia, S. F., Liu, W. and Kleinerman, E. S., 2005. A small interfering RNA targeting vascular endothelial growth factor inhibits Ewing’s sarcoma growth in a xenograft mouse model. Clin Cancer Res 11:2662–2669.

    PubMed  CAS  Google Scholar 

  • Hahm, K. B., Cho, K., Lee, C., Im, Y. H., Chang, J., Choi, S. G., Sorensen, P. H., Thiele, C. J. and Kim, S. J., 1999. Repression of the gene encoding the TGF-beta type II receptor is a major target of the EWS-FLI1 oncoprotein. Nat Genet 23:222–227.

    PubMed  CAS  Google Scholar 

  • Haldar, M., Hancock, J. D., Coffin, C. M., Lessnick, S. L. and Capecchi, M. R., 2007. A conditional mouse model of synovial sarcoma: insights into a myogenic origin. Cancer Cell 11:375–388.

    PubMed  CAS  Google Scholar 

  • Hamilton, G., Havel, M. and Mallinger, R., 1989. Expression of a new human THY-1 related antigen in Ewing’s sarcoma and peripheral neuroectodermal tumors. Immunol Lett 22:205–209.

    PubMed  CAS  Google Scholar 

  • Hamilton, G., Mallinger, R. and Havel, M., 1989. Ewing’s-sarcoma-associated HBA-71 tumor antigen represents a new differentiation marker of human thymocytes. J Cancer Res Clin Oncol 115:592–596.

    PubMed  CAS  Google Scholar 

  • Hamilton, G., Mallinger, R., Hofbauer, S. and Havel, M., 1991. The monoclonal HBA-71 antibody modulates proliferation of thymocytes and Ewing’s sarcoma cells by interfering with the action of insulin-like growth factor I. Thymus 18:33–41.

    PubMed  CAS  Google Scholar 

  • Hara, K., Maruki, Y., Long, X., Yoshino, K., Oshiro, N., Hidayat, S., Tokunaga, C., Avruch, J. and Yonezawa, K., 2002. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110:177–189.

    PubMed  CAS  Google Scholar 

  • Hara, K., Yonezawa, K., Weng, Q. P., Kozlowski, M. T., Belham, C. and Avruch, J., 1998. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem 273:14484–14494.

    PubMed  CAS  Google Scholar 

  • Heinrich, M. C., Blanke, C. D., Druker, B. J. and Corless, C. L., 2002. Inhibition of KIT tyrosine kinase activity: a novel molecular approach to the treatment of KIT-positive malignancies. J Clin Oncol 20:1692–1703.

    PubMed  CAS  Google Scholar 

  • Heldin, C. H., Johnsson, A., Wennergren, S., Wernstedt, C., Betsholtz, C. and Westermark, B., 1986. A human osteosarcoma cell line secretes a growth factor structurally related to a homodimer of PDGF A-chains. Nature 319:511–514.

    PubMed  CAS  Google Scholar 

  • Helman, L. J. and Meltzer, P., 2003. Mechanisms of sarcoma development. Nat Rev Cancer 3:685–694.

    PubMed  CAS  Google Scholar 

  • Hofbauer, S., Hamilton, G., Theyer, G., Wollmann, K. and Gabor, F., 1993. Insulin-like growth factor-I-dependent growth and in vitro chemosensitivity of Ewing’s sarcoma and peripheral primitive neuroectodermal tumour cell lines. Eur J Cancer 29A:241–245.

    PubMed  CAS  Google Scholar 

  • Hu-Lieskovan, S., Heidel, J. D., Bartlett, D. W., Davis, M. E. and Triche, T. J., 2005. Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing’s sarcoma. Cancer Res 65:8984–8992.

    PubMed  CAS  Google Scholar 

  • Huang, H. Y., Illei, P. B., Zhao, Z., Mazumdar, M., Huvos, A. G., Healey, J. H., Wexler, L. H., Gorlick, R., Meyers, P. and Ladanyi, M., 2005. Ewing sarcomas with p53 mutation or p16/p14ARF homozygous deletion: a highly lethal subset associated with poor chemoresponse. J Clin Oncol 23:548–558.

    PubMed  CAS  Google Scholar 

  • Jaboin, J., Wild, J., Hamidi, H., Khanna, C., Kim, C. J., Robey, R., Bates, S. E. and Thiele, C. J., 2002. MS-27-275, an inhibitor of histone deacetylase, has marked in vitro and in vivo antitumor activity against pediatric solid tumors. Cancer Res 62:6108–6115.

    PubMed  CAS  Google Scholar 

  • Jia, S. F., Zhou, R. R. and Kleinerman, E. S., 2003. Nude mouse lung metastases models of osteosarcoma and Ewing’s sarcoma for evaluating new therapeutic strategies. Methods Mol Med 74:495–505.

    PubMed  Google Scholar 

  • Kang, H. G., Jenabi, J. M., Zhang, J., Keshelava, N., Shimada, H., May, W. A., Ng, T., Reynolds, C. P., Triche, T. J. and Sorensen, P. H., 2007. E-cadherin cell-cell adhesion in Ewing tumor cells mediates suppression of anoikis through activation of the ErbB4 tyrosine kinase. Cancer Res 67:3094–3105.

    PubMed  CAS  Google Scholar 

  • Karnieli, E., Werner, H., Rauscher, F. J., III, Benjamin, L. E. and LeRoith, D., 1996. The IGF-I receptor gene promoter is a molecular target for the Ewing’s sarcoma-Wilms’ tumor 1 fusion protein. J Biol Chem 271:19304–19309

    PubMed  CAS  Google Scholar 

  • Keller, C., Arenkiel, B. R., Coffin, C. M., El-Bardeesy, N., DePinho, R. A. and Capecchi, M. R., 2004. Alveolar rhabdomyosarcomas in conditional Pax3:Fkhr mice: cooperativity of Ink4a/ARF and Trp53 loss of function. Genes Dev 18:2614–2626.

    PubMed  CAS  Google Scholar 

  • Khan, J., Wei, J. S., Ringner, M., Saal, L. H., Ladanyi, M., Westermann, F., Berthold, F., Schwab, M., Antonescu, C. R., Peterson, C. and Meltzer, P. S., 2001. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 7:673–679.

    PubMed  CAS  Google Scholar 

  • Kikuchi, R., Murakami, M., Sobue, S., Iwasaki, T., Hagiwara, K., Takagi, A., Kojima, T., Asano, H., Suzuki, M., Banno, Y., Nozawa, Y. and Murate, T., 2007. Ewing’s sarcoma fusion protein, EWS/Fli-1 and Fli-1 protein induce PLD2 but not PLD1 gene expression by binding to an ETS domain of 5′ promoter. Oncogene 26:1802–1810.

    PubMed  CAS  Google Scholar 

  • Kim, S., Denny, C. T. and Wisdom, R., 2006. Cooperative DNA binding with AP-1 proteins is required for transformation by EWS-Ets fusion proteins. Mol Cell Biol 26:2467–2478.

    PubMed  CAS  Google Scholar 

  • Kinsey, M., Smith, R. and Lessnick, S. L., 2006. NR0B1 is required for the oncogenic phenotype mediated by EWS/FLI in Ewing’s sarcoma. Mol Cancer Res 4:851–859.

    PubMed  CAS  Google Scholar 

  • Knoop, L. L. and Baker, S. J., 2000. The splicing factor U1C represses EWS/FLI-mediated transactivation. J Biol Chem 275:24865–24871.

    PubMed  CAS  Google Scholar 

  • Knoop, L. L. and Baker, S. J., 2001. EWS/FLI alters 5′-splice site selection. J Biol Chem 276:22317–22322.

    PubMed  CAS  Google Scholar 

  • Kontny, H. U., Hammerle, K., Klein, R., Shayan, P., Mackall, C. L. and Niemeyer, C. M., 2001. Sensitivity of Ewing’s sarcoma to TRAIL-induced apoptosis. Cell Death Differ 8:506–514.

    PubMed  CAS  Google Scholar 

  • Kontny, H. U., Lehrnbecher, T. M., Chanock, S. J. and Mackall, C. L., 1998. Simultaneous expression of Fas and nonfunctional Fas ligand in Ewing’s sarcoma. Cancer Res 58:5842–5849.

    PubMed  CAS  Google Scholar 

  • Kovar, H., Aryee, D. N., Jug, G., Henockl, C., Schemper, M., Delattre, O., Thomas, G. and Gadner, H., 1996. EWS/FLI-1 antagonists induce growth inhibition of Ewing tumor cells in vitro. Cell Growth Differ 7:429–437.

    PubMed  CAS  Google Scholar 

  • Kovar, H., Ban, J. and Pospisilova, S., 2003. Potentials for RNAi in sarcoma research and therapy: Ewing’s sarcoma as a model. Semin Cancer Biol 13:275–281.

    PubMed  CAS  Google Scholar 

  • Kreppel, M., Aryee, D. N., Schaefer, K. L., Amann, G., Kofler, R., Poremba, C. and Kovar, H., 2006. Suppression of KCMF1 by constitutive high CD99 expression is involved in the migratory ability of Ewing’s sarcoma cells. Oncogene 25:2795–2800.

    PubMed  CAS  Google Scholar 

  • Lambert, G., Bertrand, J. R., Fattal, E., Subra, F., Pinto-Alphandary, H., Malvy, C., Auclair, C. and Couvreur, P., 2000. EWS fli-1 antisense nanocapsules inhibits Ewing sarcoma-related tumor in mice. Biochem Biophys Res Commun 279:401–406.

    PubMed  CAS  Google Scholar 

  • LaRochelle, W. J., Jensen, R. A., Heidaran, M. A., May-Siroff, M., Wang, L. M., Aaronson, S. A. and Pierce, J. H., 1993. Inhibition of platelet-derived growth factor autocrine growth stimulation by a monoclonal antibody to the human alpha platelet-derived growth factor receptor. Cell Growth Differ 4:547–553.

    PubMed  CAS  Google Scholar 

  • Lawlor, E. R., Scheel, C., Irving, J. and Sorensen, P. H., 2002. Anchorage-independent multi-cellular spheroids as an in vitro model of growth signaling in Ewing tumors. Oncogene 21:307–318.

    PubMed  CAS  Google Scholar 

  • Lee, T. H., Bolontrade, M. F., Worth, L. L., Guan, H., Ellis, L. M. and Kleinerman, E. S., 2006. Production of VEGF165 by Ewing’s sarcoma cells induces vasculogenesis and the incorporation of CD34+ stem cells into the expanding tumor vasculature. Int J Cancer 119:839–846.

    PubMed  CAS  Google Scholar 

  • Lessnick, S. L., Dacwag, C. S. and Golub, T. R., 2002. The Ewing’s sarcoma oncoprotein EWS/FLI induces a p53-dependent growth arrest in primary human fibroblasts. Cancer Cell 1:393–401.

    PubMed  CAS  Google Scholar 

  • Li, R., Pei, H. and Watson, D. K., 2000. Regulation of Ets function by protein–protein interactions. Oncogene 19:6514–6523.

    PubMed  CAS  Google Scholar 

  • Li, X., Ponten, A., Aase, K., Karlsson, L., Abramsson, A., Uutela, M., Backstrom, G., Hellstrom, M., Bostrom, H., Li, H., Soriano, P., Betsholtz, C., Heldin, C. H., Alitalo, K., Ostman, A. and Eriksson, U., 2000. PDGF-C is a new protease-activated ligand for the PDGF alpha-receptor. Nat Cell Biol 2:302–309.

    PubMed  CAS  Google Scholar 

  • Lin, P. P., Pandey, M. K., Jin, F., Xiong, S., Deavers, M., Parant, J. M. and Lozano, G., 2008. EWS-FLI1 induces developmental abnormalities and accelerates sarcoma formation in a transgenic mouse model. Cancer Res 68:8968–8975.

    PubMed  CAS  Google Scholar 

  • Lipinski, M., Braham, K., Philip, I., Wiels, J., Philip, T., Goridis, C., Lenoir, G. M. and Tursz, T., 1987. Neuroectoderm-associated antigens on Ewing’s sarcoma cell lines. Cancer Res 47:183–187.

    PubMed  CAS  Google Scholar 

  • Lissat, A., Vraetz, T., Tsokos, M., Klein, R., Braun, M., Koutelia, N., Fisch, P., Romero, M. E., Long, L., Noellke, P., Mackall, C. L., Niemeyer, C. M. and Kontny, U., 2007. Interferon-gamma sensitizes resistant Ewing’s sarcoma cells to tumor necrosis factor apoptosis-inducing ligand-induced apoptosis by up-regulation of caspase-8 without altering chemosensitivity. Am J Pathol 170:1917–1930.

    PubMed  CAS  Google Scholar 

  • Lynch, T. J., Bell, D. W., Sordella, R., Gurubhagavatula, S., Okimoto, R. A., Brannigan, B. W., Harris, P. L., Haserlat, S. M., Supko, J. G., Haluska, F. G., Louis, D. N., Christiani, D. C., Settleman, J. and Haber, D. A., 2004. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139.

    PubMed  CAS  Google Scholar 

  • Maksimenko, A., Lambert, G., Bertrand, J. R., Fattal, E., Couvreur, P. and Malvy, C., 2003. Therapeutic potentialities of EWS-Fli-1 mRNA-targeted vectorized antisense oligonucleotides. Ann N Y Acad Sci 1002:72–77.

    PubMed  CAS  Google Scholar 

  • Maksimenko, A., Malvy, C., Lambert, G., Bertrand, J. R., Fattal, E., Maccario, J. and Couvreur, P., 2003. Oligonucleotides targeted against a junction oncogene are made efficient by nanotechnologies. Pharm Res 20:1565–1567.

    PubMed  CAS  Google Scholar 

  • Mateo-Lozano, S., Gokhale, P. C., Soldatenkov, V. A., Dritschilo, A., Tirado, O. M. and Notario, V., 2006. Combined transcriptional and translational targeting of EWS/FLI-1 in Ewing’s sarcoma. Clin Cancer Res 12:6781–6790.

    PubMed  CAS  Google Scholar 

  • Matsunobu, T., Tanaka, K., Matsumoto, Y., Nakatani, F., Sakimura, R., Hanada, M., Li, X., Oda, Y., Naruse, I., Hoshino, H., Tsuneyoshi, M., Miura, H. and Iwamoto, Y., 2004. The prognostic and therapeutic relevance of p27kip1 in Ewing’s family tumors. Clin Cancer Res 10:1003–1012.

    PubMed  CAS  Google Scholar 

  • May, W. A., Lessnick, S. L., Braun, B. S., Klemsz, M., Lewis, B. C., Lunsford, L. B., Hromas, R. and Denny, C. T., 1993. The Ewing’s sarcoma EWS/FLI-1 fusion gene encodes a more potent transcriptional activator and is a more powerful transforming gene than FLI-1. Mol Cell Biol 13:7393–7398.

    PubMed  CAS  Google Scholar 

  • McKeon, C., Thiele, C. J., Ross, R. A., Kwan, M., Triche, T. J., Miser, J. S. and Israel, M. A., 1988. Indistinguishable patterns of protooncogene expression in two distinct but closely related tumors: Ewing’s sarcoma and neuroepithelioma. Cancer Res 48:4307–4311.

    PubMed  CAS  Google Scholar 

  • Mendiola, M., Carrillo, J., Garcia, E., Lalli, E., Hernandez, T., de Alava, E., Tirode, F., Delattre, O., Garcia-Miguel, P., Lopez-Barea, F., Pestana, A. and Alonso, J., 2006. The orphan nuclear receptor DAX1 is up-regulated by the EWS/FLI1 oncoprotein and is highly expressed in Ewing tumors. Int J Cancer 118:1381–1389.

    PubMed  CAS  Google Scholar 

  • Merchant, M. S., Woo, C. W., Mackall, C. L. and Thiele, C. J., 2002. Potential use of imatinib in Ewing’s sarcoma: evidence for in vitro and in vivo activity. J Natl Cancer Inst 94:1673–1679.

    PubMed  CAS  Google Scholar 

  • Merchant, M. S., Yang, X., Melchionda, F., Romero, M., Klein, R., Thiele, C. J., Tsokos, M., Kontny, H. U. and Mackall, C. L., 2004. Interferon gamma enhances the effectiveness of tumor necrosis factor-related apoptosis-inducing ligand receptor agonists in a xenograft model of Ewing’s sarcoma. Cancer Res 64:8349–8356.

    PubMed  CAS  Google Scholar 

  • Nakajima, T., Uchida, C., Anderson, S. F., Lee, C. G., Hurwitz, J., Parvin, J. D. and Montminy, M., 1997. RNA helicase A mediates association of CBP with RNA polymerase II. Cell 90:1107–1112.

    PubMed  CAS  Google Scholar 

  • Nakatani, F., Tanaka, K., Sakimura, R., Matsumoto, Y., Matsunobu, T., Li, X., Hanada, M., Okada, T. and Iwamoto, Y., 2003. Identification of p21WAF1/CIP1 as a direct target of EWS-Fli1 oncogenic fusion protein. J Biol Chem 278:15105–15115.

    PubMed  CAS  Google Scholar 

  • Ng, K. P., Potikyan, G., Savene, R. O., Denny, C. T., Uversky, V. N. and Lee, K. A., 2007. Multiple aromatic side chains within a disordered structure are critical for transcription and transforming activity of EWS family oncoproteins. Proc Natl Acad Sci U S A 104:479–484.

    PubMed  CAS  Google Scholar 

  • Nishimori, H., Sasaki, Y., Yoshida, K., Irifune, H., Zembutsu, H., Tanaka, T., Aoyama, T., Hosaka, T., Kawaguchi, S., Wada, T., Hata, J., Toguchida, J., Nakamura, Y. and Tokino, T., 2002. The Id2 gene is a novel target of transcriptional activation by EWS-ETS fusion proteins in Ewing family tumors. Oncogene 21:8302–8309.

    PubMed  CAS  Google Scholar 

  • Noguera, R., Triche, T. J., Navarro, S., Tsokos, M. and Llombart, B. A., 1992. Dynamic model of differentiation in Ewing’s sarcoma cells. Comparative analysis of morphologic, immunocytochemical, and oncogene expression parameters [see comments]. Lab Invest 66:143–151.

    PubMed  CAS  Google Scholar 

  • Ostman, A. and Heldin, C. H., 2001. Involvement of platelet-derived growth factor in disease: development of specific antagonists. Adv Cancer Res 80:1–38.

    PubMed  CAS  Google Scholar 

  • Ouchida, M., Ohno, T., Fujimura, Y., Rao, V. N. and Reddy, E. S., 1995. Loss of tumorigenicity of Ewing’s sarcoma cells expressing antisense RNA to EWS-fusion transcripts. Oncogene 11:1049–1054.

    PubMed  CAS  Google Scholar 

  • Pao, W., Miller, V., Zakowski, M., Doherty, J., Politi, K., Sarkaria, I., Singh, B., Heelan, R., Rusch, V., Fulton, L., Mardis, E., Kupfer, D., Wilson, R., Kris, M. and Varmus, H., 2004. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A 101:13306–13311.

    PubMed  CAS  Google Scholar 

  • Petermann, R., Mossier, B. M., Aryee, D. N., Khazak, V., Golemis, E. A. and Kovar, H., 1998. Oncogenic EWS-Fli1 interacts with hsRPB7, a subunit of human RNA polymerase II. Oncogene 17:603–610.

    PubMed  CAS  Google Scholar 

  • Potikyan, G., Savene, R. O., Gaulden, J. M., France, K. A., Zhou, Z., Kleinerman, E. S., Lessnick, S. L. and Denny, C. T., 2007. EWS/FLI1 regulates tumor angiogenesis in Ewing’s sarcoma via suppression of thrombospondins. Cancer Res 67:6675–6684.

    PubMed  CAS  Google Scholar 

  • Prieur, A., Tirode, F., Cohen, P. and Delattre, O., 2004. EWS/FLI-1 silencing and gene profiling of Ewing cells reveal downstream oncogenic pathways and a crucial role for repression of insulin-like growth factor binding protein 3. Mol Cell Biol 24:7275–7283.

    PubMed  CAS  Google Scholar 

  • Rajah, R., Valentinis, B. and Cohen, P., 1997. Insulin-like growth factor (IGF)-binding protein-3 induces apoptosis and mediates the effects of transforming growth factor-beta1 on programmed cell death through a p53- and IGF-independent mechanism. J Biol Chem 272:12181–12188.

    PubMed  CAS  Google Scholar 

  • Reya, T., Morrison, S. J., Clarke, M. F. and Weissman, I. L., 2001. Stem cells, cancer, and cancer stem cells. Nature 414:105–111.

    PubMed  CAS  Google Scholar 

  • Riggi, N., Cironi, L., Provero, P., Suva, M. L., Kaloulis, K., Garcia-Echeverria, C., Hoffmann, F., Trumpp, A. and Stamenkovic, I., 2005. Development of Ewing’s sarcoma from primary bone marrow-derived mesenchymal progenitor cells. Cancer Res 65:11459–11468.

    PubMed  CAS  Google Scholar 

  • Ronnstrand, L., 2004. Signal transduction via the stem cell factor receptor/c-Kit. Cell Mol Life Sci 61:2535–2548.

    PubMed  CAS  Google Scholar 

  • Rorie, C. J., Thomas, V. D., Chen, P., Pierce, H. H., O’Bryan, J. P. and Weissman, B. E., 2004. The Ews/Fli-1 fusion gene switches the differentiation program of neuroblastomas to Ewing sarcoma/peripheral primitive neuroectodermal tumors. Cancer Res 64:1266–1277.

    PubMed  CAS  Google Scholar 

  • Sakimura, R., Tanaka, K., Nakatani, F., Matsunobu, T., Li, X., Hanada, M., Okada, T., Nakamura, T., Matsumoto, Y. and Iwamoto, Y., 2005. Antitumor effects of histone deacetylase inhibitor on Ewing’s family tumors. Int J Cancer 116:784–792.

    PubMed  CAS  Google Scholar 

  • Saylors, R. L., III, Stine, K. C., Sullivan, J., Kepner, J. L., Wall, D. A., Bernstein, M. L., Harris, M. B., Hayashi, R. and Vietti, T. J., 2001. Cyclophosphamide plus topotecan in children with recurrent or refractory solid tumors: a Pediatric Oncology Group phase II study. J Clin Oncol 19:3463–3469.

    PubMed  CAS  Google Scholar 

  • Schuetz, A. N., Rubin, B. P., Goldblum, J. R., Shehata, B., Weiss, S. W., Liu, W., Wick, M. R. and Folpe, A. L., 2005. Intercellular junctions in Ewing sarcoma/primitive neuroectodermal tumor: additional evidence of epithelial differentiation. Mod Pathol 18:1403–1410.

    PubMed  CAS  Google Scholar 

  • Schweigerer, L., Neufeld, G. and Gospodarowicz, D., 1987. Basic fibroblast growth factor as a growth inhibitor for cultured human tumor cells. J Clin Invest 80:1516–1520.

    PubMed  CAS  Google Scholar 

  • Scotlandi, K., Benini, S., Nanni, P., Lollini, P. L., Nicoletti, G., Landuzzi, L., Serra, M., Manara, M. C., Picci, P. and Baldini, N., 1998. Blockage of insulin-like growth factor-I receptor inhibits the growth of Ewing’s sarcoma in athymic mice. Cancer Res 58:4127–4131.

    PubMed  CAS  Google Scholar 

  • Scotlandi, K., Manara, M. C., Nicoletti, G., Lollini, P. L., Lukas, S., Benini, S., Croci, S., Perdichizzi, S., Zambelli, D., Serra, M., Garcia-Echeverria, C., Hofmann, F. and Picci, P., 2005. Antitumor activity of the insulin-like growth factor-I receptor kinase inhibitor NVP-AEW541 in musculoskeletal tumors. Cancer Res 65:3868–3876.

    PubMed  CAS  Google Scholar 

  • Scotlandi, K., Perdichizzi, S., Bernard, G., Nicoletti, G., Nanni, P., Lollini, P. L., Curti, A., Manara, M. C., Benini, S., Bernard, A. and Picci, P., 2006. Targeting CD99 in association with doxorubicin: an effective combined treatment for Ewing’s sarcoma. Eur J Cancer 42:91–96.

    PubMed  CAS  Google Scholar 

  • Scotlandi, K., Perdichizzi, S., Manara, M. C., Serra, M., Benini, S., Cerisano, V., Strammiello, R., Mercuri, M., Reverter-Branchat, G., Faircloth, G., D’Incalci, M. and Picci, P., 2002. Effectiveness of Ecteinascidin-743 against drug-sensitive and -resistant bone tumor cells. Clin Cancer Res 8:3893–3903.

    PubMed  CAS  Google Scholar 

  • Siligan, C., Ban, J., Bachmaier, R., Spahn, L., Kreppel, M., Schaefer, K. L., Poremba, C., Aryee, D. N. and Kovar, H., 2005. EWS-FLI1 target genes recovered from Ewing’s sarcoma chromatin. Oncogene 24:2512–2524.

    PubMed  CAS  Google Scholar 

  • Singleton, J. R., Dixit, V. M. and Feldman, E. L., 1996. Type I insulin-like growth factor receptor activation regulates apoptotic proteins. J Biol Chem 271:31791–31794.

    PubMed  CAS  Google Scholar 

  • Smith, R., Owen, L. A., Trem, D. J., Wong, J. S., Whangbo, J. S., Golub, T. R. and Lessnick, S. L., 2006. Expression profiling of EWS/FLI identifies NKX2.2 as a critical target gene in Ewing’s sarcoma. Cancer Cell 9:405–416.

    PubMed  CAS  Google Scholar 

  • Spahn, L., Siligan, C., Bachmaier, R., Schmid, J. A., Aryee, D. N. and Kovar, H., 2003. Homotypic and heterotypic interactions of EWS, FLI1 and their oncogenic fusion protein. Oncogene 22:6819–6829.

    PubMed  CAS  Google Scholar 

  • Staege, M. S., Hutter, C., Neumann, I., Foja, S., Hattenhorst, U. E., Hansen, G., Afar, D. and Burdach, S. E., 2004. DNA microarrays reveal relationship of Ewing family tumors to both endothelial and fetal neural crest-derived cells and define novel targets. Cancer Res 64:8213–8221.

    PubMed  CAS  Google Scholar 

  • Stegmaier, K., Wong, J. S., Ross, K. N., Chow, K. T., Peck, D., Wright, R. D., Lessnick, S. L., Kung, A. L. and Golub, T. R., 2007. Signature-based small molecule screening identifies cytosine arabinoside as an EWS/FLI modulator in Ewing sarcoma. PLoS Med 4:e122.

    PubMed  Google Scholar 

  • Takeda, K., Stagg, J., Yagita, H., Okumura, K. and Smyth, M. J., 2007. Targeting death-inducing receptors in cancer therapy. Oncogene 26:3745–3757.

    PubMed  CAS  Google Scholar 

  • Tamborini, E., Bonadiman, L., Albertini, V., Pierotti, M. A. and Pilotti, S., 2003. Re: Potential use of imatinib in Ewing’s sarcoma: evidence for in vitro and in vivo activity. J Natl Cancer Inst 95:1087–1088; author reply 1088–1089

    PubMed  Google Scholar 

  • Tanaka, K., Iwakuma, T., Harimaya, K., Sato, H. and Iwamoto, Y., 1997. EWS-Fli1 antisense oligodeoxynucleotide inhibits proliferation of human Ewing’s sarcoma and primitive neuroectodermal tumor cells. J Clin Invest 99:239–247.

    PubMed  CAS  Google Scholar 

  • Tanaka, S., Ito, T. and Wands, J. R., 1996. Neoplastic transformation induced by insulin receptor substrate-1 overexpression requires an interaction with both Grb2 and Syp signaling molecules. J Biol Chem 271:14610–14616.

    PubMed  CAS  Google Scholar 

  • Tang, H. and Wong-Staal, F., 2000. Specific interaction between RNA helicase A and Tap, two cellular proteins that bind to the constitutive transport element of type D retrovirus. J Biol Chem 275:32694–32700.

    PubMed  CAS  Google Scholar 

  • Tirado, O. M., Mateo-Lozano, S., Villar, J., Dettin, L. E., Llort, A., Gallego, S., Ban, J., Kovar, H. and Notario, V., 2006. Caveolin-1 (CAV1) is a target of EWS/FLI-1 and a key determinant of the oncogenic phenotype and tumorigenicity of Ewing’s sarcoma cells. Cancer Res 66:9937–9947.

    PubMed  CAS  Google Scholar 

  • Tirode, F., Laud-Duval, K., Prieur, A., Delorme, B., Charbord, P. and Delattre, O., 2007. Mesenchymal stem cell features of Ewing tumors. Cancer Cell 11:421–429.

    PubMed  CAS  Google Scholar 

  • Torchia, E. C., Boyd, K., Rehg, J. E., Qu, C. and Baker, S. J., 2007. EWS/FLI-1 induces rapid onset of myeloid/erythroid leukemia in mice. Mol Cell Biol 27:7918–7934.

    PubMed  CAS  Google Scholar 

  • Torchia, E. C., Jaishankar, S. and Baker, S. J., 2003. Ewing tumor fusion proteins block the differentiation of pluripotent marrow stromal cells. Cancer Res 63:3464–3468.

    PubMed  CAS  Google Scholar 

  • Toretsky, J. A., 2003. Ewing sarcoma and primitive neuroectodermal tumors. January 17, 2003. http://www.emedicine.com/ped/topic2589.htm

    Google Scholar 

  • Toretsky, J. A., Connell, Y., Neckers, L. and Bhat, N. K., 1997. Inhibition of EWS-FLI-1 fusion protein with antisense oligodeoxynucleotides. J Neurooncol 31:9–16.

    PubMed  CAS  Google Scholar 

  • Toretsky, J. A., Erkizan, V., Levenson, A., Abaan, O. D., Parvin, J. D., Cripe, T. P., Rice, A. M., Lee, S. B. and Uren, A., 2006. Oncoprotein EWS-FLI1 activity is enhanced by RNA helicase A. Cancer Res 66:5574–5581.

    PubMed  CAS  Google Scholar 

  • Toretsky, J. A., Kalebic, T., Blakesley, V., LeRoith, D. and Helman, L. J., 1997. The insulin-like growth factor-I receptor is required for EWS/FLI-1 transformation of fibroblasts. J Biol Chem 272:30822–30827.

    PubMed  CAS  Google Scholar 

  • Toretsky, J. A., Steinberg, S. M., Thakar, M., Counts, D., Pironis, B., Parente, C., Eskenazi, A., Helman, L. and Wexler, L. H., 2001. Insulin-like growth factor type 1 (IGF-1) and IGF binding protein-3 in patients with Ewing sarcoma family of tumors. Cancer 92:2941–2947.

    PubMed  CAS  Google Scholar 

  • Toretsky, J. A., Thakar, M., Eskenazi, A. E. and Frantz, C. N., 1999. Phosphoinositide 3-hydroxide kinase blockade enhances apoptosis in the Ewing’s sarcoma family of tumors. Cancer Res 59:5745–5750.

    PubMed  CAS  Google Scholar 

  • Turc-Carel, C., Philip, I., Berger, M.-P., Philip, T. and Lenoir, G. M., 1984. Chromosome study of Ewing’s sarcoma (ES) cell lines. Consistency of a reciprocal translocation t(11;22)(q24;q12). Cancer Genet Cytogenet 12:1–19.

    PubMed  CAS  Google Scholar 

  • Uren, A., Merchant, M. S., Sun, C. J., Vitolo, M. I., Sun, Y., Tsokos, M., Illei, P. B., Ladanyi, M., Passaniti, A., Mackall, C. and Toretsky, J. A., 2003. Beta-platelet-derived growth factor receptor mediates motility and growth of Ewing’s sarcoma cells. Oncogene 22:2334–2342.

    PubMed  CAS  Google Scholar 

  • Uren, A., Tcherkasskaya, O. and Toretsky, J. A., 2004. Recombinant EWS-FLI1 oncoprotein activates transcription. Biochemistry 43:13579–13589.

    PubMed  Google Scholar 

  • Uren, A., Wolf, V., Sun, Y. F., Azari, A., Rubin, J. S. and Toretsky, J. A., 2004. Wnt/Frizzled signaling in Ewing sarcoma. Pediatr Blood Cancer 43:243–249.

    PubMed  Google Scholar 

  • Valentinis, B. and Baserga, R., 1996. The IGF-I receptor protects tumor cells from apoptosis induced by high concentrations of serum. Biochem Biophys Res Commun 224:362–368.

    PubMed  CAS  Google Scholar 

  • van Valen, F., Winkelmann, W. and Jurgens, H., 1992. Type I and type II insulin-like growth factor receptors and their function in human Ewing’s sarcoma cells. J Cancer Res Clin Oncol 118:269–275.

    PubMed  Google Scholar 

  • Vormoor, J., Baersch, G., Decker, S., Hotfilder, M., Schafer, K. L., Pelken, L., Rube, C., van Valen, F., Jurgens, H. and Dockhorn-Dworniczak, B., 2001. Establishment of an in vivo model for pediatric Ewing tumors by transplantation into NOD/scid mice. Pediatr Res 49:332–341.

    PubMed  CAS  Google Scholar 

  • Wagner, L. M., McAllister, N., Goldsby, R. E., Rausen, A. R., McNall-Knapp, R. Y., McCarville, M. B. and Albritton, K., 2007. Temozolomide and intravenous irinotecan for treatment of advanced Ewing sarcoma. Pediatr Blood Cancer 48:132–139.

    PubMed  Google Scholar 

  • Waterfield, M. D., Scrace, G. T., Whittle, N., Stroobant, P., Johnsson, A., Wasteson, A., Westemark, B., Heldin, C.-H., Huang, J. S. and Deuel, T. F., 1983. Platelet-derived growth factor is structurally related to the putative transforming protein p28sis of simian sarcoma virus. Nature 304:35–39.

    PubMed  CAS  Google Scholar 

  • Watson, D. K., Robinson, L., Hodge, D. R., Kola, I., Papas, T. S. and Seth, A., 1997. FLI1 and EWS-FLI1 function as ternary complex factors and ELK1 and SAP1a function as ternary and quaternary complex factors on the Egr1 promoter serum response elements. Oncogene 14:213–221.

    PubMed  CAS  Google Scholar 

  • Weidner, N. and Tjoe, J., 1994. Immunohistochemical profile of monoclonal antibody O13: antibody that recognizes glycoprotein p30/32MIC2 and is useful in diagnosing Ewing’s sarcoma and peripheral neuroepithelioma. Am J Surg Pathol 18:486–494.

    PubMed  CAS  Google Scholar 

  • Welford, S. M., Hebert, S. P., Deneen, B., Arvand, A. and Denny, C. T., 2001. DNA binding domain-independent pathways are involved in EWS/FLI1-mediated oncogenesis. J Biol Chem 276:41977–41984.

    PubMed  CAS  Google Scholar 

  • Westwood, G., Dibling, B. C., Cuthbert-Heavens, D. and Burchill, S. A., 2002. Basic fibroblast growth factor (bFGF)-induced cell death is mediated through a caspase-dependent and p53-independent cell death receptor pathway. Oncogene 21:809–824.

    PubMed  CAS  Google Scholar 

  • Whang-Peng, J., Triche, T. J., Knutsen, T., Miser, J., Douglass, E. C. and Israel, M. A., 1984. Chromosome translocation in peripheral neuroepithelioma. N Engl J Med 311:584–585.

    PubMed  CAS  Google Scholar 

  • Whitesell, L., Shifrin, S. D., Schwab, G. and Neckers, L. M., 1992. Benzoquinonoid ansamycins possess selective tumoricidal activity unrelated to src kinase inhibition. Cancer Res 52:1721–1728.

    PubMed  CAS  Google Scholar 

  • Williams, L. T., 1989. Signal transduction by the platelet-derived growth factor receptor. Science 243:1564–1570.

    PubMed  CAS  Google Scholar 

  • Williamson, A. J., Dibling, B. C., Boyne, J. R., Selby, P. and Burchill, S. A., 2004. Basic fibroblast growth factor (bFGF)-induced cell death is effected through sustained activation of p38MAPK and up-regulation of the death receptor p75NTR. J Biol Chem 279(46):47912–47928

    PubMed  CAS  Google Scholar 

  • Yang, L., Chansky, H. A. and Hickstein, D. D., 2000. EWS/Fli-1 fusion protein interacts with hyperphosphorylated RNA polymerase II and interferes with serine-arginine protein-mediated RNA splicing. J Biol Chem 275:37612–37618.

    PubMed  CAS  Google Scholar 

  • Yee, D., Favoni, R. E., Lebovic, G. S., Lombana, F., Powell, D. R., Reynolds, C. P. and Rosen, N., 1990. Insulin-like growth factor I expression by tumors of neuroectodermal origin with the t(11;22) chromosomal translocation. A potential autocrine growth factor. J Clin Invest 86:1806–1814.

    PubMed  CAS  Google Scholar 

  • Yin, X., Giap, C., Lazo, J. S. and Prochownik, E. V., 2003. Low molecular weight inhibitors of Myc-Max interaction and function. Oncogene 22:6151–6159.

    PubMed  CAS  Google Scholar 

  • Zoubek, A., Dockhorn-Dworniczak, B., Delattre, O., Christiansen, H., Niggli, F., Gatterer-Menz, I., Smith, T. L., Jurgens, H., Gadner, H. and Kovar, H., 1996. Does expression of different EWS chimeric transcripts define clinically distinct risk groups of Ewing tumor patients? J Clin Oncol 14:1245–1251.

    PubMed  CAS  Google Scholar 

  • Zwerner, J. P., Guimbellot, J. and May, W. A., 2003. EWS/FLI function varies in different cellular backgrounds. Exp Cell Res 290:414–419.

    PubMed  CAS  Google Scholar 

  • Zwerner, J. P., Joo, J., Warner, K. L., Christensen, L., Hu-Lieskovan, S., Triche, T. J. and May, W. A., 2008. The EWS/FLI1 oncogenic transcription factor deregulates GLI1. Oncogene 27:3282–3291.

    PubMed  CAS  Google Scholar 

  • Zwerner, J. P. and May, W. A., 2001. PDGF-C is an EWS/FLI induced transforming growth factor in Ewing family tumors. Oncogene 20:626–633.

    PubMed  CAS  Google Scholar 

  • Zwerner, J. P. and May, W. A., 2002. Dominant negative PDGF-C inhibits growth of Ewing family tumor cell lines. Oncogene 21:3847–3854.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Audrey Kubetin for her skillful assistance with this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Toretsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Toretsky, J.A., Üren, A. (2010). Ewing’s Sarcoma Family of Tumors: Molecular Targets Need Arrows. In: Houghton, P., Arceci, R. (eds) Molecularly Targeted Therapy for Childhood Cancer. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69062-9_18

Download citation

Publish with us

Policies and ethics