Skip to main content

Malignant Melanoma

  • Chapter
  • First Online:
Nuclear Oncology

Abstract

Malignant melanoma was diagnosed in approximately 68,000 patients in 2010 in the USA. Melanoma accounts for about 3% of all skin cancers. Major parameters that impact ­prognosis include Breslow thickness, ulceration, tumor location, growth pattern, histological ­subtype, patient age, gender and tumor status of regional lymph nodes. Melanomas are staged using the American Joint Committee on Cancer (AJCC) TNM system, which has incorporated the histological status of SLN into its latest staging system version of cutaneous malignant melanoma.

In early stage melanoma (AJCC I–II), sentinel lymph node biopsy (SLNB) is the standard of care for nodal staging. Lymphoscintigraphy with SPECT/CT improves detection of SLN. In AJCC stage I–II melanoma, [18F]FDG PET/CT has poor sensitivity for detection of nodal metastases but is sensitive for detection of distant metastases. In patients with AJCC stage III (regional nodal involvement) or stage IV disease (systemic metastases), [18F]FDG PET/CT is useful to identify metastatic disease. PET imaging in melanoma patients should include the arms and legs, especially in patients whose primary lesions arise on extremities. False-negative results can occur with small skin and brain metastases, and lesions adjacent to the heart, kidneys, or urinary bladder.

Although [18F]FDG PET/CT is more specific in the diagnosis of melanoma pulmonary metastases, chest CT is more sensitive. Most PET false negatives in recurrent disease are typically less than 1 cm in diameter and are mainly pulmonary and hepatic in location, or in the brain. [18F]FDG PET/CT is useful in treatment monitoring of metastatic melanoma and in post-therapy surveillance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Diepgen TL, Mahler V. The epidemiology of skin cancer. Br J Dermatol. 2002;146 Suppl 61:1–6.

    Article  PubMed  Google Scholar 

  2. Australian Institute of Health and Welfare (AIHW) and Australasian Association of Cancer Registries. Cancer in Australia 2001. Canberra: AIHW, 2004.

    Google Scholar 

  3. Australian Institute of Health and Welfare (AIHW) & Australasian Association of Cancer Registries. Cancer in Australia: an overview, 2006. Cancer Series Number 37. Canberra: AIHW, 2007.

    Google Scholar 

  4. European Network of Cancer Registries No. 4, November 2003.

    Google Scholar 

  5. American Cancer Society. Cancer facts & figures 2009. Atlanta: American Cancer Society; 2009.

    Google Scholar 

  6. Bishop DT, Demenais F, Goldstein AM, et al. Geographical variation in the penetrance of CDKN2A mutations for melanoma. J Natl Cancer Inst. 2002;94:894–903.

    Article  PubMed  CAS  Google Scholar 

  7. Goggins WB, Tsao H. A population based analysis of risk factors for a second primary cutaneous melanoma among melanoma ­survivors. Cancer. 2003;97:639–43.

    Article  PubMed  Google Scholar 

  8. Miller AJ, Mihm Jr MC. Melanoma. N Engl J Med. 2004;351:998–1012.

    Article  Google Scholar 

  9. Gilchrest BA, Eller MS, Geller AC, Yaar M. The pathogenesis of melanoma induced by ultraviolet radiation. N Engl J Med. 1999;340:1341–8.

    Article  PubMed  CAS  Google Scholar 

  10. Haluska FG, Tsao H, Wu H, Haluska FS, Lazar A, Goel V. Genetic alterations in signaling pathways in melanoma. Clin Cancer Res. 2006;12(7 Pt 2):2301s–7.

    Article  PubMed  CAS  Google Scholar 

  11. Davies H, Bignell GR, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–54.

    Article  PubMed  CAS  Google Scholar 

  12. http://www.sanger.ac.uk/genetics/CGP/cosmic/. Accessed Septem-ber 2nd, 2010.

  13. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407(6801):249–57.

    Article  PubMed  CAS  Google Scholar 

  14. Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev. 2004;25:581–611.

    Article  PubMed  CAS  Google Scholar 

  15. Salven P, Heikkila P, Joensuu H. Enhanced expression of vascular endothelial growth factor in metastatic melanoma. Br J Cancer. 1997;76:930–4.

    Article  PubMed  CAS  Google Scholar 

  16. Bayer-Garner IB, Hough Jr AJ, Smoller BR. Vascular endothelial growth factor expression in malignant melanoma: prognostic versus diagnostic usefulness. Mod Pathol. 1999;12:770–4.

    PubMed  CAS  Google Scholar 

  17. Barnhill RL, Xiao M, Graves D, Antoniades HN. Expression of platelet-derived growth factor (PDGF)-A, PDGF-B and the PDGF-alpha receptor, but not the PDGF-beta receptor, in human malignant melanoma in vivo. Br J Dermatol. 1996;135:898–904.

    Article  PubMed  CAS  Google Scholar 

  18. Rofstad EK, Halsor EF. Vascular endothelial growth factor, interleukin 8, platelet-derived endothelial cell growth factor, and basic fibroblast growth factor promote angiogenesis and metastasis in human melanoma xenografts. Cancer Res. 2000;60:4932–8.

    PubMed  CAS  Google Scholar 

  19. Jost LM. ESMO minimum clinical recommendations for diagnosis, treatment and follow-up of cutaneous malignant melanoma. Ann Oncol. 2003;14:1012–3.

    Article  PubMed  CAS  Google Scholar 

  20. American Joint Committee on Cancer (AJCC). TNM staging system for melanoma. 7th ed. New York: Springer; 2010.

    Google Scholar 

  21. Balch CM, Soong SJ, Gershenwald JE, et al. Prognostic factors analysis of 17,600 melanoma patients: validation of the American Joint Committee on Cancer melanoma staging system. J Clin Oncol. 2001;19:3622–34.

    PubMed  CAS  Google Scholar 

  22. Morton DL, Thompson JF, Essner R. Validation of the accuracy of intraoperative lymphatic mapping and sentinel lymphadenectomy for early-stage melanoma: a multicenter trial. Multicenter Selective Lymphadenectomy Trial Group. Ann Surg. 1999;230:453–63.

    Article  PubMed  CAS  Google Scholar 

  23. Gershenwald JE, Thompson W, Mansfield PF, et al. Multi-institutional melanoma lymphatic mapping experience: the ­prognostic value of sentinel lymph node status in 612 stage I or II melanoma patients. J Clin Oncol. 1999;17:976–83.

    PubMed  CAS  Google Scholar 

  24. Meier F, Will S, Ellwanger U, Schlagenhauff B, Schittek B, Rassner G, Garbe C. Metastatic pathways and time courses in the orderly progression of cutaneous melanoma. Br J Dermatol. 2002;147:62–70.

    Article  PubMed  CAS  Google Scholar 

  25. Leiter U, Meier F, Schittek B, Garbe C. The natural course of cutaneous melanoma. J Surg Oncol. 2004;86:172–8.

    Article  PubMed  Google Scholar 

  26. Manola J, Atkins M, Ibrahim J, Kirkwood J. Prognostic factors in metastatic melanoma: a pooled analysis of Eastern Cooperative Oncology Group trials. J Clin Oncol. 2000;18:3782–93.

    PubMed  CAS  Google Scholar 

  27. NCCN Clinical Practice Guidelines in Oncology™ Melanoma V.2.2010.

    Google Scholar 

  28. Morton DL, Thompson JF, Cochran AJ, et al. Sentinel-node biopsy or nodal observation in melanoma. N Engl J Med. 2006;355:1307–17.

    Article  PubMed  CAS  Google Scholar 

  29. Barnhill RL, Katzen J, Spatz A, Fine J, Berwick M. The importance of mitotic rate as a prognostic factor for localized cutaneous melanoma. J Cutan Pathol. 2005;32:268–73.

    Article  PubMed  Google Scholar 

  30. Azzola MF, Shaw HM, Thompson JF, et al. Tumor mitotic rate is a more powerful prognostic indicator than ulceration in patients with primary cutaneous melanoma. Cancer. 2003;97:1488–98.

    Article  PubMed  Google Scholar 

  31. Thompson JF, Shaw HM. Is sentinel lymph node biopsy appropriate in patients with thin melanomas: too early to tell? Ann Surg Oncol. 2006;13:279–81.

    Article  PubMed  Google Scholar 

  32. Nathan FE, Mastrangelo MJ. Adjuvant therapy for cutaneous ­melanoma. Semin Oncol. 1995;22:647–61.

    PubMed  CAS  Google Scholar 

  33. Santinami M, Maurichi A, Patuzzo R, Pennacchioli E, Cascinelli N. Impact of clinical trials on the treatment of melanoma. Surg Oncol Clin N Am. 2001;10:935–47.

    PubMed  CAS  Google Scholar 

  34. Kirkwood JM, Strawderman MH, Ernstoff MS, et al. Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group Trial EST 1684. J Clin Oncol. 1996;14:7–17.

    PubMed  CAS  Google Scholar 

  35. Kirkwood JM, Manola J, Ibrahim J, et al. A pooled analysis of Eastern Cooperative Oncology Group and intergroup trials of adjuvant high-dose interferon for melanoma. Clin Cancer Res. 2004;10:1670–7.

    Article  PubMed  CAS  Google Scholar 

  36. Eggermont AM, Suciu S, Santinami M, et al. Adjuvant therapy with pegylated interferon alfa-2b versus observation alone in resected stage III melanoma: final results of EORTC 18991, a randomized phase III trial. Lancet. 2008;372:117–26.

    Article  PubMed  CAS  Google Scholar 

  37. Grob JJ, Dreno B, de la Salmoniere P, et al. Randomised trial of interferon alpha-2a as adjuvant therapy in resected primary melanoma thicker than 1.5 mm without clinically detectable node metastases. French Cooperative Group on Melanoma. Lancet. 1998;351:1905–10.

    Article  PubMed  CAS  Google Scholar 

  38. Hancock BW, Wheatley K, Harris S, et al. Adjuvant interferon in high-risk melanoma: the AIM HIGH Study-United Kingdom Coordinating Committee on Cancer Research randomized study of adjuvant low-dose extended-duration interferon Alfa-2a in high-risk resected malignant melanoma. J Clin Oncol. 2004;22:53–61.

    Article  PubMed  CAS  Google Scholar 

  39. Mitchell MS, Abrams J, Thompson JA, et al. Randomized trial of an allogeneic melanoma lysate vaccine with low-dose interferon alfa-2b compared with high-dose interferon alfa-2b for resected stage III cutaneous melanoma. J Clin Oncol. 2007;25:2078–85.

    Article  PubMed  CAS  Google Scholar 

  40. Kevin B, Kima KB, Sewa S, et al. A randomized phase III trial of biochemotherapy versus interferon- a-2b for adjuvant therapy in patients at high risk for melanoma recurrence. Melanoma Res. 2009;19:42–9.

    Article  CAS  Google Scholar 

  41. NCCN Clinical Practice Guidelines in Oncology Melanoma v.2.2009.

    Google Scholar 

  42. Essner R, Lee JH, Wanek LA, Itakura H, Morton DL. Contemporary surgical treatment of advanced-stage melanoma. Arch Surg. 2004;139:961–7.

    Article  PubMed  Google Scholar 

  43. Balch CM, Gershenwald JE, Soong S-J et al. Final version of 2009 AJCC melanoma staging and classification. Journal of Clinical Oncology 2009;27:6199–6206.

    PubMed  CAS  Google Scholar 

  44. Balch CM, Reintgen DS, Kirkwood JM, et al. Cutaneous melanoma. In: DeVita Jr VT, Hellman S, Rosenberg SA, editors. Cancer: principles and practice of oncology. 5th ed. Philadelphia, PA: Lippincott-Raven; 1997. p. 1947–94.

    Google Scholar 

  45. Blesa JMG, Pulido EG, Pulla MP, Cande VA. Treatment options for metastatic melanoma. A systematic review. Cancer Therapy. 2009;7:188–99.

    Google Scholar 

  46. Middleton MR, Grob JJ, Aaronson N, et al. Randomized phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. J Clin Oncol. 2000;18:158–66.

    PubMed  CAS  Google Scholar 

  47. Legha SS, Ring S, Papadopoulos N, Plager C, Chawla S, Benjamin R. A prospective evaluation of a triple-drug regimen containing cisplatin, vinblastine, and dacarbazine (CVD) for ­metastatic melanoma. Cancer. 1989;64:2024–9.

    Article  PubMed  CAS  Google Scholar 

  48. McClay EF, Mastrangelo MJ, Bellet RE, Berd D. Combination chemotherapy and hormonal therapy in the treatment of malignant melanoma. Cancer Treat Rep. 1987;71:465–9.

    PubMed  CAS  Google Scholar 

  49. Atkins MB, Lotze MT, Dutcher JP, et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol. 1999;17:2105–16.

    PubMed  CAS  Google Scholar 

  50. Davis ID, Chen W, Jackson H, et al. Vaccination with recombinant NY-ESO-1 protein formulated with ISCOMATRIX™ adjuvant induces a broad integrated CD4+ and CD8+ T cell and humoral immune response in cancer patients with minimal residual disease. Proc Natl Acad Sci. 2004;101:10697–702.

    Article  PubMed  CAS  Google Scholar 

  51. Scott AM, Lee FT, Hopkins W, et al. Specific targeting, biodistribution and lack of immunogenicity of chimeric anti-GD3 monoclonal antibody KM871 in patients with metastatic melanoma—results of a phase I trial. J Clin Oncol. 2001;19:3976–87.

    PubMed  CAS  Google Scholar 

  52. Chapman PB, Wu D, Ragupathi G, et al. Sequential Immunization of Melanoma Patients with GD3 Ganglioside Vaccine and Anti-Idiotypic Monoclonal Antibody That Mimics GD3 Ganglioside. Clin Cancer Res. 2004;10:4717.

    Article  PubMed  CAS  Google Scholar 

  53. Hersh EM, O’Day SJ, Powderly J, et al. A phase II multicenter study of ipilimumab with or without dacarbazine in chemotherapy-naïve patients with advanced melanoma. Invest New Drugs. 2011;29:489–98.

    Article  PubMed  CAS  Google Scholar 

  54. Varker A, Biber J, Kefauver C, et al. A randomized phase 2 trial of bevacizumab with or without daily low-dose interferon alfa-2b in metastatic malignant melanoma. Ann Surg Oncol. 2007;14:2367–76.

    Article  PubMed  Google Scholar 

  55. Perez DG, Suman VJ, Fitch TR, et al. Phase 2 trial of carboplatin, weekly paclitaxel, and biweekly bevacizumab in patients with unresectable stage IV melanoma: a North Central Cancer Treatment Group study, N047 A. Cancer. 2009;115:119–27.

    Article  PubMed  CAS  Google Scholar 

  56. Vihinen PP, Hernberg M, Vuoristo MS, et al. A phase II trial of bevacizumab with dacarbazine and daily low-dose interferon-alpha2a as first line treatment in metastatic melanoma. Melanoma Res. 2010;20:318–25.

    Article  PubMed  CAS  Google Scholar 

  57. Bedikian AY, Millward M, Pehamberger H, et al. Bcl-2 antisense (oblimersen sodium) plus dacarbazine in patients with advanced melanoma: the Oblimersen Melanoma Study Group. J Clin Oncol. 2006;24:4738–45.

    Article  PubMed  CAS  Google Scholar 

  58. Hauschild A, Agarwala SS, Trefzer U, et al. Results of a phase III, randomized, placebo-controlled study of sorafenib in combination with carboplatin and paclitaxel as second-line treatment in patients with unresectable stage III or stage IV melanoma. J Clin Oncol. 2009;27:2823–30.

    Article  PubMed  CAS  Google Scholar 

  59. Eisen T, Ahmad T, Flaherty KT, et al. Sorafenib in advanced melanoma: a Phase II randomised discontinuation trial analysis. Br J Cancer 2006;95:581–6.

    Google Scholar 

  60. Wagner JD, Schauwecker D, Davidson D, Coleman 3rd JJ, Saxman S, Hutchins G, Love C, Hayes JT. Prospective study of fluorodeoxyglucose-positron emission tomography imaging of lymph node basins in melanoma patients undergoing sentinel node biopsy. J Clin Oncol. 1999;17:1508–15.

    PubMed  CAS  Google Scholar 

  61. Belhocine T, Scott AM, Even-Sapir E, Essner R. The role of nuclear medicine in the management of cutaneous malignant melanoma. J Nucl Med. 2006;47:957–67.

    PubMed  Google Scholar 

  62. Even-Sapir E, Lerman H, Lievshitz G, et al. Lymphoscintigraphy for sentinel node mapping using a hybrid SPECT/CT system. J Nucl Med. 2003;44:1413–20.

    PubMed  Google Scholar 

  63. Crippa F, Leutner M, Belli F, et al. Which kinds of lymph node metastases can FDG PET detect? A clinical study in melanoma. J Nucl Med. 2000;41:1491–4.

    PubMed  CAS  Google Scholar 

  64. Mijnhout GS, Hoekstra OS, van Lingen A, van Diest PJ, Adèr HJ, Lammertsma AA, Pijpers R, Meijer S, Teule GJJ. How morphometric analysis of metastatic load predicts the (un)usefulness of PET scanning: the case of lymph node staging in melanoma. J Clin Pathol. 2003;56:283–6.

    Article  PubMed  CAS  Google Scholar 

  65. Klein M, Freedman N, Lotem M, et al. Contribution of whole body F-18-FDG-PET and lymphoscintigraphy to the assessment of regional and distant metastases in cutaneous malignant melanoma. A pilot study. Nuklearmedizin. 2000;39:56–61.

    PubMed  CAS  Google Scholar 

  66. Acland KM, Healy C, Calonje E, et al. Comparison of positron emission tomography scanning and sentinel node biopsy in the detection of micrometastases of primary cutaneous malignant melanoma. J Clin Oncol. 2001;19:2674–8.

    PubMed  CAS  Google Scholar 

  67. Kokoska MS, Olson G, Kelemen PR, et al. The use of lymphoscintigraphy and PET in the management of head and neck melanoma. Otolaryngol Head Neck Surg. 2001;125:213–20.

    Article  PubMed  CAS  Google Scholar 

  68. Belhocine T, Pierard G, De Labrassinne M, Lahaye T, Rigo P. Staging of regional nodes in AJCC stage I and II melanoma: 18FDG PET imaging versus sentinel node detection. Oncologist. 2002;7:271–8.

    Article  PubMed  Google Scholar 

  69. Fink AM, Holle-Robatsch S, Herzog N, et al. Positron emission tomography is not useful in detecting metastasis in the sentinel lymph node in patients with primary malignant melanoma stage I and II. Melanoma Res. 2004;14:141–5.

    Article  PubMed  Google Scholar 

  70. Havenga K, Cobben DC, Oyen WJ, et al. Fluorodeoxyglucose-positron emission tomography and sentinel lymph node biopsy in staging primary cutaneous melanoma. Eur J Surg Oncol. 2003;29:662–4.

    Article  PubMed  CAS  Google Scholar 

  71. Longo MI, Lazaro P, Bueno C, Carreras JL, Montz R. Fluorodeoxyglucose-positron emission tomography imaging versus sentinel node biopsy in the primary staging of melanoma patients. Dermatol Surg. 2003;29:245–8.

    Article  PubMed  Google Scholar 

  72. Schafer A, Herbst RA, Beiteke U, et al. Sentinel lymph node excision (SLNE) and positron emission tomography in the staging of stage I–II melanoma patients. Hautarzt. 2003;54:440–7.

    PubMed  CAS  Google Scholar 

  73. Hafner J, Schmid MH, Kempf W, Burg G, Kunzi W, Meuli-Simmen C, et al. Baseline staging in cutaneous malignant melanoma. Br J Dermatol. 2004;150:677–86.

    Article  PubMed  CAS  Google Scholar 

  74. Libberecht K, Husada G, Peeters T, Michiels P, Gys T, Molderez C. Initial staging of malignant melanoma by positron emission tomography and sentinel node biopsy. Acta Chir Belg. 2005;105:621–5.

    PubMed  CAS  Google Scholar 

  75. Wagner JD, Schauwecker D, Davidson D, et al. Inefficacy of F-18 fluorodeoxy-d-glucose-positron emission tomography scans for initial evaluation in early-stage cutaneous melanoma. Cancer. 2005;104:570–9.

    Article  PubMed  Google Scholar 

  76. Vereecken P, Laporte M, Petein M, Steels E, Heenen M. Evaluation of extensive initial staging procedure in intermediate/high-risk melanoma patients. J Eur Acad Dermatol Venereol. 2005;19:66–73.

    Article  PubMed  CAS  Google Scholar 

  77. Clark PB, Soo V, Kraas J, Shen P, Levine EA. Futility of fluorodeoxyglucose F 18 positron emission tomography in initial evaluation of patients with T2 to T4 melanoma. Arch Surg. 2006;141:284–8.

    Article  PubMed  Google Scholar 

  78. Kell MR, Ridge JA, Joseph N, Sigurdson ER. PET CT imaging in patients undergoing sentinel node biopsy for melanoma. Eur J Surg Oncol. 2007;33:911–3.

    Article  PubMed  CAS  Google Scholar 

  79. Maubec E, Lumbroso J, Masson F, et al. F-18 fluorodeoxy-d-glucose positron emission tomography scan in the initial evaluation of patients with a primary melanoma thicker than 4 mm. Melanoma Res. 2007;17:147–54.

    Article  PubMed  Google Scholar 

  80. Constantinidou A, Hofman M, O’Doherty M, Acland KM, Healy C, Harries M. Routine positron emission tomography and positron emission tomography/computed tomography in melanoma staging with positive sentinel node biopsy is of limited benefit. Melanoma Res. 2008;18:56–60.

    Article  PubMed  Google Scholar 

  81. Singh B, Ezziddin S, Palmedo H, et al. Preoperative 18F-FDG-PET/CT imaging and sentinel node biopsy in the detection of regional lymph node metastases in malignant melanoma. Melanoma Res. 2008;18:346–52.

    Article  PubMed  Google Scholar 

  82. Klode J, Dissemond J, Grabbe S, Hillen U, Poeppel T, Boeing C. Sentinel lymph node excision and PET-CT in the initial stage of malignant melanoma: a retrospective analysis of 61 patients with malignant melanoma in American Joint Committee on cancer stages I and II. Dermatol Surg. 2010;36:439–45.

    Article  PubMed  CAS  Google Scholar 

  83. Fletcher JW, Djulbegovic B, Soares HP, et al. Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med. 2008;49:480–508.

    Article  PubMed  Google Scholar 

  84. Steinert HC, Huch Boni RA, Buck A, et al. Malignant melanoma: staging with whole-body positron emission tomography and 2-[F-18]-fluoro-2-deoxy-d-glucose. Radiology. 1995;195:705–9.

    PubMed  CAS  Google Scholar 

  85. Damian DL, Fulham MJ, Thompson E, Thompson JF. Positron emission tomography in the detection and management of metastatic melanoma. Melanoma Res. 1996;6:325–9.

    Article  PubMed  CAS  Google Scholar 

  86. Rinne D, Baum RP, Hor G, Kaufmann R. Primary staging and follow-up of high risk melanoma patients with whole-body 18F fluorodeoxyglucose positron emission tomography: results of a prospective study of 100 patients. Cancer. 1998;82:1664–71.

    Article  PubMed  CAS  Google Scholar 

  87. Tyler DS, Onaitis M, Kherani A, et al. Positron emission tomography scanning in malignant melanoma. Cancer. 2000;89:1019–25.

    Article  PubMed  CAS  Google Scholar 

  88. Stas M, Stroobants S, Dupont P, et al. 18-FDG PET scan in the staging of recurrent melanoma: additional value and therapeutic impact. Melanoma Res. 2002;12:479–90.

    Article  PubMed  CAS  Google Scholar 

  89. Harris MT, Berlangieri SU, Cebon JS, Davis ID, Scott AM. Impact of 2-deoxy-2[F-18]fluoro-d-glucose positron emission tomography on the management of patients with advanced melanoma. Mol Imaging Biol. 2005;7:304–8.

    Article  PubMed  Google Scholar 

  90. Bastiaannet E, Wobbes T, Hoekstra OS, et al. Prospective comparison of [18F]fluorodeoxyglucose positron emission tomography with computed tomography in patients with melanoma and palpable lymph node metastases: diagnostic accuracy and impact on treatment. J Clin Oncol. 2009;27:4774–80.

    Article  PubMed  Google Scholar 

  91. Schwimmer J, Essner R, Patel A, et al. A review of the literature for whole body FDG PET in the management of patients with melanoma. Q J Nucl Med. 2000;44:153–67.

    PubMed  CAS  Google Scholar 

  92. Strobel K, Bode B, Dummer R, et al. Limited value of 18F-FDG PET/CT and S-100B tumour marker in the detection of liver metastases from uveal melanoma compared to liver metastases from cutaneous melanoma. Eur J Nucl Med Mol Imag. 2009;36:1774–82.

    Article  CAS  Google Scholar 

  93. Loffler M, Weckesser M, Franzius Ch, Nashan D, Schober O. Malignant melanoma and 18F-FDG-PET: should the whole body scan include the legs? Nuklearmedizin. 2003;42:167–72.

    PubMed  CAS  Google Scholar 

  94. Coleman RE, Delbeke D, Guiberteau MJ, et al. Concurrent PET/CT with an integrated imaging system: intersociety dialogue from the Joint Working Group of the American College of Radiology, the Society of Nuclear Medicine, and the Society of Computed Body Tomography and Magnetic Resonance. J Nucl Med. 2005;46:1225–39.

    PubMed  Google Scholar 

  95. Hofmann U, Szedlak M, Rittgen W, Jung EG, Shadendorf D. Primary staging and follow-up in melanoma patient-monocenter evaluation of methods, costs and patient survival. Br J Cancer. 2002;87:151–7.

    Article  PubMed  CAS  Google Scholar 

  96. Weiss M, Loprinzi CL, Creagan ET, Dalton RJ, Novotny P, O’Fallon JR. Utility of follow-up tests for detecting recurrent ­disease in patients with malignant melanomas. JAMA. 1995;274:1703–5.

    Article  PubMed  CAS  Google Scholar 

  97. Kuvshinoff BW, Kurtz C, Coit DG. Computed tomography in evaluation of patients with stage III melanoma. Ann Surg Oncol. 1997;4:252–8.

    Article  PubMed  CAS  Google Scholar 

  98. Mijnhout GS, Comans EF, Raijmakers P, et al. Reproducibility and clinical value of 18F-fluorodeoxyglucose positron emission tomography in recurrent melanoma. Nucl Med Commun. 2002;23:475–81.

    Article  PubMed  CAS  Google Scholar 

  99. Fulham MJ, Kelley B, Ramshaw J, Scott AM. Impact of FDG PET on the management of patients with suspected or proven metastatic melanoma prior to surgery: a prospective, multi-centre study as part of the Australian PET Data Collection Project. J Nucl Med. 2007;48 Suppl 2:191P.

    Google Scholar 

  100. Jiménez-Requena F, Delgado-Bolton RC, Fernández-Pérez C, et al. Meta-analysis of the performance of 18F-FDG PET in cutaneous melanoma. Eur J Nucl Med Mol Imag. 2010;37:284–300.

    Article  Google Scholar 

  101. Fuster D, Chiang S, Johnson G, Schuchter LM, Zhuang H, Alavi A. Is 18F-FDG PET more accurate than standard diagnostic procedures in the detection of suspected recurrent melanoma? J Nucl Med. 2004;45:1323–7.

    PubMed  Google Scholar 

  102. Swetter SM, Carroll LA, Johnson DL, Segall GM. Positron emission tomography is superior to computed tomography for metastatic detection in melanoma patients. Ann Surg Oncol. 2002;9:646–53.

    Article  PubMed  Google Scholar 

  103. Brady MS, Akhurst T, Spanknebel K, et al. Utility of preoperative [18]f fluorodeoxyglucose-positron emission tomography scanning in high-risk melanoma patients. Ann Surg Oncol. 2006;13:525–32.

    Article  PubMed  Google Scholar 

  104. Dalrymple-Hay MJ, Rome PD, Kennedy C, Fulham M, McCaughan BC. Pulmonary metastatic melanoma—the survival benefit associated with positron emission tomography scanning. Eur J Cardiothorac Surg. 2002;21:611–4.

    Article  PubMed  CAS  Google Scholar 

  105. Schöder H, Larson SM, Yeung HW. PET/CT in oncology: ­integration into clinical management of lymphoma, melanoma, and gastrointestinal malignancies. J Nucl Med. 2004;45 Suppl 1:72S–81.

    PubMed  Google Scholar 

  106. Mottaghy FM, Sunderkotter C, Schubert R, et al. Direct comparison of [18F]FDG PET/CT with PET alone and with side-by-side PET and CT in patients with malignant melanoma. Eur J Nucl Med Mol Imag. 2007;34:1355–64.

    Article  Google Scholar 

  107. Macapinlac HA. The utility of 2-deoxy-2-[18F]fluoro-d-glucose-positron emission tomography and combined positron emission tomography and computed tomography in lymphoma and melanoma. Mol Imaging Biol. 2004;6:200–7.

    Article  PubMed  Google Scholar 

  108. Reinhardt MJ, Joe AY, Jaeger U, et al. Diagnostic performance of whole body dual modality 18F-FDG PET/CT imaging for N- and M-staging of malignant melanoma: experience with 250 consecutive patients. J Clin Oncol. 2006;24:1178–87.

    Article  PubMed  Google Scholar 

  109. Falk MS, Truitt AK, Coakley FV, Kashani-Sabet M, Hawkins RA, Franc B. Interpretation, accuracy and management implications of FDG PET/CT in cutaneous malignant melanoma. Nucl Med Commun. 2007;28:273–80.

    Article  PubMed  CAS  Google Scholar 

  110. Lagaru A, Quon A, Johnson D, Gambhir SS, McDougall IR. 2-Deoxy-2-[F-18]fluoro-d-glucose positron emission tomography/computed tomography in the management of melanoma. Mol Imaging Biol. 2007;9:50–7.

    Article  Google Scholar 

  111. Veit-Haibach P, Vogt FM, Jablonka R, et al. Diagnostic accuracy of contrast enhanced FDG-PET/CT in primary staging of cutaneous malignant melanoma. Eur J Nucl Med Mol Imag. 2009;36:910–8.

    Article  Google Scholar 

  112. Kurli M, Chin K, Finger PT. Whole-body 18FDG PET/CT imaging for lymph node and metastatic staging of conjunctival melanoma. Br J Ophthalmol. 2008;92:479–82.

    Article  PubMed  CAS  Google Scholar 

  113. Pfannenberg C, Aschoff P, Schanz S, et al. Prospective comparison of 18F-fluorodeoxyglocose positron emission tomography/computed tomography and whole-body magnetic resonance imaging in staging of advanced melanoma. Eur J Cancer. 2007;43:557–64.

    Article  PubMed  Google Scholar 

  114. Strobel K, Dummer R, Steinert HC, et al. Chemotherapy response assessment in stage IV melanoma patients-comparison of 18F-FDG-PET/CT, CT, brain MRI, and tumor marker S-100B. Eur J Nucl Med Mol Imag. 2008;35:1786–95.

    Article  Google Scholar 

  115. González AB, Jiménez RB, Delgado PJR, et al. Biochemotherapy in the treatment of metastatic melanoma in selected patients. Clin Transl Oncol. 2009;11:382–6.

    Article  CAS  Google Scholar 

  116. Hofman MS, Constantinidou A, Acland K, Healy C, Harries M, O’Doherty M, Melanoma Group. Assessing response to chemotherapy in metastatic melanoma with FDG PET: early experience. Nucl Med Commun. 2007;28:902–6.

    Article  PubMed  Google Scholar 

  117. Brand C, Ellwanger U, Stroebel W, et al. Prolonged survival of 2 years or longer for patients with disseminated melanoma: an analysis of related prognostic factors. Cancer. 1997;70:2345–53.

    Article  Google Scholar 

  118. Meyer T, Merkel S, Goehl J, Hohenberger W. Surgical therapy for distant metastases of malignant melanoma. Cancer. 2000;89:1983–91.

    Article  PubMed  CAS  Google Scholar 

  119. Gulec SA, Faries MB, Lee CC, et al. The role of fluorine-18 deoxyglucose positron emission tomography in the management of patients with metastatic melanoma: impact on surgical decision making. Clin Nucl Med. 2003;28:961–5.

    Article  PubMed  Google Scholar 

  120. Bastiaannet E, Oyen WJ, Meijer S, et al. Impact of [18F]fluorodeoxyglucose positron emission tomography on surgical management of melanoma patients. Br J Surg. 2006;93:243–9.

    Article  PubMed  CAS  Google Scholar 

  121. Aukema TS, Valdés Olmos RA, Wouters WJM, et al. Utility of preoperative 18F-FDG PET/CT and brain MRI in melanoma patients with palpable lymph node metastases. Ann Surg Oncol. 2010;17:2773–8.

    Article  PubMed  Google Scholar 

  122. Romano E, Scordo M, Dusza SW, Coit DG, Chapman PB. Site and timing of first relapse in stage III melanoma patients: implications for follow-up guidelines. J Clin Oncol. 2010;28:3042–7.

    Article  PubMed  Google Scholar 

  123. Poo-Hwu W-J, Ariyan S, Lamb L, et al. Follow-up recommendations for patients with American Joint Committee on cancer stages I–III malignant melanoma. Cancer. 1999;88:2252–8.

    Article  Google Scholar 

  124. Soong SJ, Harrison RA, McCarthy WH, Urist MM, Balch CM. Factors affecting survival following local, regional, or distant recurrence from localized melanoma. J Surg Oncol. 1998;67:228–33.

    Article  PubMed  CAS  Google Scholar 

  125. Eigtved A, Andersson AP, Karin Dahlstrøm K, et al. Use of fluorine-18 fluorodeoxyglucose positron emission tomography in the detection of silent metastases from malignant melanoma. Eur J Nucl Med. 2000;27:70–5.

    Article  PubMed  CAS  Google Scholar 

  126. Krug B, Crott R, Roch I, et al. Cost-effectiveness analysis of FDG PET-CT in the management of pulmonary metastases from malignant melanoma. Acta Oncol. 2010;49:192–200.

    Article  PubMed  Google Scholar 

  127. Cobben DC, Jager PL, Elsinga PH, Maas B, Suurmeijer AJ, Hoekstra HJ. 18F-3-fluoro-3-deoxy-l-thymidine: a new tracer for staging of metastatic melanoma? J Nucl Med. 2003;44:1927–32.

    PubMed  CAS  Google Scholar 

  128. Ishiwata K, Kubota K, Kubota R, Iwata R, Takahashi T, Ido T. Selective 2-[18F]fluorodopa uptake for melanogenesis in murine metastatic melanomas. J Nucl Med. 1991;32:95–101.

    PubMed  CAS  Google Scholar 

  129. Dimitrakopoulou-Strauss A, Strauss LG, Burger C. Quantitative PET studies in pretreated melanoma patients: a comparison of 6-[18F]fluoro-l-dopa with 18F-FDG and 15O-water using compartment and noncompartment analysis. J Nucl Med. 2001;42:248–56.

    PubMed  CAS  Google Scholar 

  130. Beer AJ, Haubner R, Sarbia M, et al. Positron emission tomography using [18F]-Galacto-RGD identifies the level of integrin αvβ3 expression in man. Clin Cancer Res. 2006;12:3942–9.

    Article  PubMed  CAS  Google Scholar 

  131. Greguric I, Taylor SR, Denoyer D, et al. Discovery of [18F]N-(2-(diethylamino)ethyl)-6-fluoronicotinamide: a melanoma positron emission tomography imaging radiotracer with high tumor to body contrast ratio and rapid renal clearance. J Med Chem. 2009;52:5299–302.

    Article  PubMed  CAS  Google Scholar 

  132. Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. New Engl J Med. 2010;363:711–23.

    Article  PubMed  CAS  Google Scholar 

  133. Robert C, Thomas L, Bondarenko I, et al. Ipilimumab plus Dacarbazine for Previously Untreated Metastatic Melanoma. New Engl J Med. 2011;364:2517–26.

    Article  PubMed  CAS  Google Scholar 

  134. Eisen T, Marais R, Affolter A, et al. Sorafenib and dacarbazine as first-line therapy for advanced melanoma: phase I and open-label phase II studies. Br J Cancer 2011;105:353–9.

    Article  PubMed  CAS  Google Scholar 

  135. McDermott DF, Sosman JA, Gonzalez R, et al. Double-blind randomized phase II study of the combination of sorafenib and dacarbazine in patients with advanced melanoma: a report from the 11715 Study Group. J Clin Oncol 2008;26:2178–85.

    Article  PubMed  CAS  Google Scholar 

  136. Sosman JA, Kim KB, Schuchter L, et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med. 2012;366:707–14.

    Article  PubMed  CAS  Google Scholar 

  137. Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 2011;364:2507–16.

    Article  PubMed  CAS  Google Scholar 

  138. Trefzer U, Minor D, Ribas A, et al. BREAK-2: a Phase IIA trial of the selective BRAF kinase inhibitor GSK2118436 in patients with BRAF mutation-positive (V600E/K) metastatic melanoma. Pigment Cell Melanoma Res. 2011;24:1020.

    Article  PubMed  CAS  Google Scholar 

  139. Falchook GS, Long GV, Kurzrock R, et al. Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. Lancet 2012;379:1893–901.

    Article  PubMed  CAS  Google Scholar 

  140. Hauschild A, Grob JJ, Demidov LV, et al. Dabrafenib in ­BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380(9839):358–65.

    Article  PubMed  CAS  Google Scholar 

  141. Weber JS, Flaherty KT, Infante JR, et al. Updated safety and efficacy results from a phase I/II study of the oral BRAF inhibitor dabrafenib (GSK2118436) combined with the oral MEK 1/2 inhibitor trametinib (GSK1120212) in patients with BRAFi-naive metastatic melanoma. J Clin Oncol 30, 2012 (suppl; abstr 8510).

    Article  PubMed  CAS  Google Scholar 

  142. Flaherty KT, Robert C, Hersey P, et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med. 2012;367:107–14.

    Article  PubMed  CAS  Google Scholar 

  143. Ribas A, Hodi FS, Kurland JF, et al.CA184-161: A phase I/II trial of vemurafenib and ipilimumab in patients with BRAF V600 mutation-positive metastatic melanoma. J Clin Oncol 30, 2012 (suppl; abstr TPS8603).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Scott MB, MD (SYD), FRACP, DDU .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Scott, A.M., Ciprotti, M., Lee, ST. (2013). Malignant Melanoma. In: Strauss, H., Mariani, G., Volterrani, D., Larson, S. (eds) Nuclear Oncology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48894-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-48894-3_24

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-48893-6

  • Online ISBN: 978-0-387-48894-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics