Skip to main content

Neural Crest Cell Plasticity

Size Matters

  • Chapter
Neural Crest Induction and Differentiation

Part of the book series: Advances in Experimental Medicine and Biology ((volume 589))

Abstract

Patterning and morphogenesis of neural crest-derived tissues within a developing vertebrate embryo rely on a complex balance between signals acquired by neural crest cells in the neuroepithelium during their formation and signals from the tissues that the neural crest cells contact during their migration. Axial identity of hindbrain neural crest is controlled by a combinatorial pattern of Hox gene expression. Cellular interactions that pattern neural crest involve signals from the same key molecular families that regulate other aspects of patterning and morphogenesis within a developing embryo, namely the BMP, SHH and FGF pathways. The developmental program that regulates neural crest cell fate is both plastic and fixed. As a cohort of interacting cells, neural crest cells carry information that directs the axial pattern and species-specific morphology of the head and face. As individual cells, neural crest cells are responsive to signals from each other as well as from non-neural crest tissues in the environment. General rules and fundamental mechanisms have been important for the conservation of basic patterning of neural crest, but exceptions are notable and relevant. The key to furthering our understanding of important processes such as craniofacial development will require a better characterization of the molecular determinants of the endoderm, ectoderm and mesoderm and the effects that these molecules have on neural crest cell development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Le Douarin N, Kalcheim C. The Neural Crest. 2nd ed. Cambridge Univesity Press, 1999.

    Google Scholar 

  2. Noden D. The role of the neural crest in patterning of avian cranial skeletal, connective, and muscle tissues. Devl Biol 1983; 96:144–165.

    Article  CAS  Google Scholar 

  3. Gans C, Northcutt R. Neural crest and the origin of vertebrates: A new head. Science 1983; 220:268–274.

    Article  Google Scholar 

  4. Serbedzija G, Fraser S, Bronner-Fraser M. Vital dye analysis of cranial neural crest cell migration in the mouse embryo. Development 1992; 116:297–307.

    PubMed  CAS  Google Scholar 

  5. Kulesa P, Ellies DL, Trainor PA. Comparative analysis of neural crest cell death, migration, and function during vertebrate embryogenesis. Dev Dyn 2004; 229:14–29.

    Article  PubMed  CAS  Google Scholar 

  6. Vaage S. The segmentation of the primitive neural tube in chick embryos (Gallus domesticus). Adv Anat Embryol Cell Biol 1969; 41:1–88.

    Google Scholar 

  7. Couly GF, Coltey PM, Le Douarin NM. The triple origin of skull in higher vertebrates-a study in quail-chick chimeras. Development 1993; 117:409–429.

    PubMed  CAS  Google Scholar 

  8. Kontges G, Lumsden A. Rhombencephalic neural crest segmentation is preserved throughout craniofacial ontogeny. Development 1996; 122(10):3229–3242.

    PubMed  CAS  Google Scholar 

  9. Fraser S, Keynes R, Lumsden A. Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions. Nature 1990; 344:431–435.

    Article  PubMed  CAS  Google Scholar 

  10. Guthrie S, Lumsden A. Formation and regeneration of rhombomere boundaries in the developing chick hindbrain. Development 1991; 112:221–229.

    PubMed  CAS  Google Scholar 

  11. Guthrie S, Prince V, Lumsden A. Selective dispersal of avian rhombomere cells in orthotopic and heterotopic grafts. Development 1993; 118:527–538.

    PubMed  CAS  Google Scholar 

  12. Birgbauer E, Fraser SE. Violation of cell lineage restriction compartments in the chick hindbrain. Development 1994; 120:1347–1356.

    PubMed  CAS  Google Scholar 

  13. Xu Q, Mellitzer G, Robinson V et al. In vivo cell sorting in complementary segmental domains mediated by Eph receptors and ephrins. Nature 1999; 399:267–271.

    Article  PubMed  CAS  Google Scholar 

  14. Mellitzer G, Xu Q, Wilkinson D. Eph receptors and ephrins restrict cell intermingling and communication. Nature 1999; 400:77–81.

    Article  PubMed  CAS  Google Scholar 

  15. Wilkinson DG, Bhatt S, Cook M et al. Segmental expression of Hox-2 homeobox-containing genes in the developing mouse hindbrain. Nature 1989; 341:405–409.

    Article  PubMed  CAS  Google Scholar 

  16. Hunt P, Gulisano M, Cook M et al. A distinct Hox code for the branchial region of the head. Nature 1991; 353:861–864.

    Article  PubMed  CAS  Google Scholar 

  17. Lumsden A, Krumlauf R. Patterning the vertebrate neuraxis. Science 1996; 274:1109–1115.

    Article  PubMed  CAS  Google Scholar 

  18. Keynes R, Krumlauf R. Hox genes and regionalization of the nervous system. Ann Rev Neurosci 1994; 17:109–132.

    Article  PubMed  CAS  Google Scholar 

  19. Iulianella A, Melton KR, Trainor PA. Somitogenesis: Breaking new boundaries. Neuron 2003; 40(1):11–14.

    Article  PubMed  CAS  Google Scholar 

  20. McGinnis W, Krumlauf R. Homeobox genes and axial patterning. Cell 1992; 68:283–302.

    Article  PubMed  CAS  Google Scholar 

  21. Hunt P, Wilkinson D, Krumlauf R. Patterning the vertebrate head: Murine Hox 2 genes mark distinct subpopulations of premigratory and migrating neural crest. Development 1991; 112:43–51.

    PubMed  CAS  Google Scholar 

  22. Studer M, Gavalas A, Marshall H et al. Genetic interaction between Hoxa1 and Hoxb1 reveal new roles in regulation of early hindbrain patterning. Development 1998; 125:1025–1036.

    PubMed  CAS  Google Scholar 

  23. Krumlauf R. Hox genes in vertebrate development. Cell 1994; 78:191–201.

    Article  PubMed  CAS  Google Scholar 

  24. Goddard J, Rossel M, Manley N et al. Mice with targeted disruption of Hoxb1 fail to form the motor nucleus of the VIIth nerve. Development 1996; 122:3217–3228.

    PubMed  CAS  Google Scholar 

  25. Gavalas A, Studer M, Lumsden A et al. Hoxa1 and Hoxb1 synergize in patterning the hindbrain, cranial nerves and second pharyngeal arch. Development 1998; 125:1123–1136.

    PubMed  CAS  Google Scholar 

  26. Studer M, Lumsden A, Ariza-McNaughton L et al. Altered segmental identity and abnormal migration of motor neurons in mice lacking Hoxb-1. Nature 1996; 384:630–635.

    Article  PubMed  CAS  Google Scholar 

  27. Zhang M, Kim HJ, Marshall H et al. Ectopic Hoxa-1 induces rhombomere transformation in mouse hindbrain. Development 1994; 120(9):2431–2442.

    PubMed  CAS  Google Scholar 

  28. Barrow JR, Stadler HS, Capecchi MR. Roles of Hoxa1 and Hoxa2 in patterning the early hindbrain of the mouse. Development 2000; 127(5):933–944.

    PubMed  CAS  Google Scholar 

  29. Helmbacher F, Pujades C, Desmarquet C et al. Hoxa1 and Krox20 synergize to control the development of rhombomere 3. Development 1998; 125:4739–4748.

    PubMed  CAS  Google Scholar 

  30. Hunt P, Whiting J, Muchamore I et al. Homeobox genes and models for patterning the hindbrain and branchial arches. Development 1991; 112(Suppl):187–196.

    Google Scholar 

  31. Guthrie S, Muchamore I, Kuroiwa A et al. Neuroectodermal autonomy of Hox-2.9 expression revealed by rhombomere transpositions. Nature 1992; 356:157–159.

    Article  PubMed  CAS  Google Scholar 

  32. Prince V, Lumsden A. Hoxa-2 expression in normal and transposed rhombomeres: Independent regulation in the neural tube and neural crest. Development 1994; 120:911–923.

    PubMed  CAS  Google Scholar 

  33. Couly GF, Grapin-Bottom A, Coltey P et al. The regeneration of the cephalic neural crest, a problem revisited: The regenerating cells originate from the contralateral or from the anterior and posterior neural folds. Development 1996; 122:3393–3407.

    PubMed  CAS  Google Scholar 

  34. Couly G, Grapin-Botton A, Coltey P et al. Determination of the identity of the derivatives of the cephalic neural crest: Incompatibilty between Hox gene expression and lower jaw development. Development 1998; 125:3445–3459.

    PubMed  CAS  Google Scholar 

  35. Grammatopoulos GA, Bell E, Toole L et al. Homeotic transformation of branchial arch identity after Hoxa2 overexpression. Development 2000; 127(24):5355–5365.

    PubMed  CAS  Google Scholar 

  36. Pasqualetti M, Ori M, Nardi I et al. Ectopic Hoxa2 induction after neural crest migration results in homeosis of jaw elements in Xenopus. Development 2000; 127(24):5367–5378.

    PubMed  CAS  Google Scholar 

  37. Creuzet S, Couly G, Vincent C et al. Negative effect of Hox gene expression on the development of the neural crest-derived facial skeleton. Development 2002; 129(18):4301–4313.

    PubMed  CAS  Google Scholar 

  38. Gendron-Maguire M, Mallo M, Zhang M et al. Hoxa-2 mutant mice exhibit homeotic transformation of skeletal elements derived from cranial neural crest. Cell 1993; 75:1317–1331.

    Article  PubMed  CAS  Google Scholar 

  39. Rijli FM, Mark M, Lakkaraju S et al. A homeotic transformation is generated in the rostral branchial region of the head by disruption of Hoxa-2, which acts as a selector gene. Cell 1993; 75:1333–1349.

    Article  PubMed  CAS  Google Scholar 

  40. Chisaka O, Capecchi M. Regionally restricted developmental defects resulting from targeted disruption of the mouse homeobox gene hox1.5. Nature 1991; 350:473–479.

    Article  PubMed  CAS  Google Scholar 

  41. Kanzler B, Kuschert SJ, Liu Y-H et al. Hoxa2 restricts the chondrogenic domain and inhibits bone formation during development of the branchial area. Development 1998; 125:2587–2597.

    PubMed  CAS  Google Scholar 

  42. Ohnemus S, Bobola N, Kanzler B et al. Different levels of Hoxa2 are required for particular developmental processes. Mech Dev 2001; 108(1–2):135–147.

    Article  PubMed  CAS  Google Scholar 

  43. Couly G, Creuzet S, Bennaceur S et al. Interactions between Hox-negative cephalic neural crest cells and the foregut endoderm in patterning the facial skeleton in the vertebrate head. Development 2002; 129(4):1061–1073.

    PubMed  CAS  Google Scholar 

  44. Trainor PA, Krumlauf R. Hox genes, neural crest cells and branchial arch patterning. Curr Opin Cell Biol 2001; 13(6):698–705.

    Article  PubMed  CAS  Google Scholar 

  45. Nonchev S, Vesque C, Maconochie M et al. Segmental expression of Hoxa-2 in the hindbrain is directly regulated by Krox-20. Development 1996; 122:543–554.

    PubMed  CAS  Google Scholar 

  46. Frasch M, Chen X, Lufkin T. Evolutionary-conserved enhancers direct region-specific expression of the murine Hoxa-1 and Hoxa-2 loci in both mice and Drosophila. Development 1995; 121:95–974.

    Google Scholar 

  47. Maconochie M, Krishnamurthy R, Nonchev S et al. Regulation of Hoxa2 in cranial neural crest cells involves members of the AP-2 family. Development 1999; 126:1483–1494.

    PubMed  CAS  Google Scholar 

  48. Zhang J, Hagopian-Donaldson S, Serbedzija G et al. Neural tube, skeletal and body wall defects in mice lacking transcription factor AP-2. Nature 1996; 381:238–241.

    Article  PubMed  CAS  Google Scholar 

  49. Schorle H, Meier P, Buchert M et al. Transcription factor AP-2 is essential for cranial closure and craniofacial development. Nature 1996; 381:235–238.

    Article  PubMed  CAS  Google Scholar 

  50. Knight RD, Javidan Y, Nelson S et al. Skeletal and pigment cell defects in the lockjaw mutant reveal multiple roles for zebrafish tfap2a in neural crest development. Dev Dyn 2004; 229:87–98.

    Article  PubMed  CAS  Google Scholar 

  51. Knight RD, Nair S, Nelson SS et al. Lockjaw encodes a zebrafish tfap2a required for early neural crest development. Development 2003; 130:5755–5768.

    Article  PubMed  CAS  Google Scholar 

  52. Barrallo-Gimeno A, Holzschuh J, Driever W et al. Neural crest survival and differentiation in zebrafish depends on mont blanc/tfap2a gene function. Development 2004; 131:1463–1477.

    Article  PubMed  CAS  Google Scholar 

  53. Mallo M, Brandlin I. Segmental identity can change independently in the hindbrain and rhombencephalic neural crest. Dev Dyn 1997; 210:146–156.

    Article  PubMed  CAS  Google Scholar 

  54. Trainor P, Krumlauf R. Plasticity in mouse neural crest cells reveals a new patterning role for cranial mesoderm. Nat Cell Biol 2000; 2:96–102.

    Article  PubMed  CAS  Google Scholar 

  55. Schilling T. Plasticity of zebrafish Hox expression in the hindbrain and cranial neural crest hindbrain. Dev Biol 2001; 231:201–216.

    Article  PubMed  CAS  Google Scholar 

  56. Trainor P, Krumlauf R. Patterning the cranial neural crest: Hindbrain segmentation and Hox gene plasticity. Nat Rev Neurosci 2000; 1:116–124.

    Article  PubMed  CAS  Google Scholar 

  57. Kulesa P, Bronner-Fraser M, Fraser S. In ovo time-lapse analysis after dorsal neural tube ablation shows rerouting of chick hindbrain neural crest. Development 2000; 127(13):2843–2852.

    PubMed  CAS  Google Scholar 

  58. McKeown SJ, Newgreen DF, Farlie PG. Temporal restriction of migratory and lineage potential in rhombomere 1 and 2 neural crest. Dev Biol 2003; 255:62–76.

    Article  PubMed  CAS  Google Scholar 

  59. Trainor PA, Ariza-McNaughton L, Krumlauf R. Role of the isthmus and FGFs in resolving the paradox of neural crest plasticity and prepatterning. Science 2002; 295(5558): 1288–1291.

    Article  PubMed  CAS  Google Scholar 

  60. Martinez S, Wassef M, Alvarado-Mallart RM. Induction of a mesencephalic phenotype in the 2-day-old chick prosencephalon is preceded by the early expression of the homeobox gene engrailed. Neuron 1991; 6:971–981.

    Article  PubMed  CAS  Google Scholar 

  61. Crossley PH, Martinez S, Martin GR. Midbrain development induced by FGF8 in the chick embryo. Nature 1996; 380(6569):66–68.

    Article  PubMed  CAS  Google Scholar 

  62. Irving C, Mason I. Signalling by fgf8 from the isthmus patterns the anterior hindbrain and establishes the anterior limit of Hox gene expression. Development 2000; 127:177–186.

    PubMed  CAS  Google Scholar 

  63. Trainor PA, Sobieszczuk D, Wilkinson D et al. Signalling between the hindbrain and paraxial tissues dictates neural crest migration pathways. Development 2002; 129(2):433–442.

    PubMed  CAS  Google Scholar 

  64. Le Douarin NM, Renaud D, Tieillet MA et al. Cholinergic differentiation of presumptive adrenergic neuroblasts in interspecific chimeras after heterotopic transplantation. Proc Natl Acad Sci USA 1975; 72:728–732.

    Article  PubMed  Google Scholar 

  65. Kahn CR, Coyle JT, Cohen AM. Head and trunk neural crest in vitro: Autonomic neuron differentiation. Dev Biol 1980; 77:340–348.

    Article  PubMed  CAS  Google Scholar 

  66. Yntema C, Hammond W. Depletions and abnormalities in the cervical sympathetic system of the chick following exterpation of the neural crest. J Exp Zool 1945; 100:237–263.

    Article  Google Scholar 

  67. McKee G, Ferguson M. The effects of mesencephalic neural crest cell extirpation on the development of chicken embryos. J Anat 1984; 139:491–512.

    PubMed  Google Scholar 

  68. Scherson T, Serbedzija G, Fraser S et al. Regulative capacity of the cranial neural tube and neural crest. Development 1993; 118:1049–1061.

    PubMed  CAS  Google Scholar 

  69. McGonnell IM, Graham A. Trunk neural crest has skeletogenic potential. Curr Biol 2002; 12(9):767–771.

    Article  PubMed  CAS  Google Scholar 

  70. Lumsden A. The neural crest contribution to tooth development in the mammalian embryo. In: Maderson PFA, ed. Developmental and Evolutionary Aspects of the Neural Crest. New York: John Wiley, 1987:261–300.

    Google Scholar 

  71. Lumsden AG. Spatial organization of the epithelium and the role of neural crest cells in the initiation of the mammalian tooth germ. Development 1988; 103(Suppl):155–169.

    PubMed  Google Scholar 

  72. Noden DM. An analysis of migratory behavior of avian cephalic neural crest cells. Dev Biol 1975; 42(1):106–130.

    Article  PubMed  CAS  Google Scholar 

  73. Kulesa PM, Fraser SE. Segmentation of the vertebrate hindbrain: A time-lapse analysis. Int J Dev Biol 1998; 42(3):385–392.

    PubMed  CAS  Google Scholar 

  74. Golding J, Trainor P, Krumlauf R et al. Defects in pathfinding by cranial neural crest cells in mice lacking the Neuregulin receptor ErbB4. Nat Cell Biol 2000; 2:103–109.

    Article  PubMed  CAS  Google Scholar 

  75. Kulesa PM, Fraser SE. Neural crest cell dynamics revealed by time-lapse video microscopy of whole embryo chick explant cultures. Dev Biol 1998; 204(2):327–344.

    Article  PubMed  CAS  Google Scholar 

  76. Smith A, Robinson V, Patel K et al. The EphA4 and EphB1 receptor tyrosine kinases and ephrin-B2 ligand regulate targeted migration of branchial neural crest cells. Curr Biol 1997; 7:561–570.

    Article  PubMed  CAS  Google Scholar 

  77. Serbedzija G, Bronner-Fraser M, Fraser SE. Vital dye analysis of the timing and pathways of avian trunk neural crest cell migration. Development 1989; 106:806–816.

    Google Scholar 

  78. Erickson CA, Duong TD, Tosney KW. Descriptive and experimental analysis of the dispersion of neural crest cells along the dorsolateral path and their entry into ectoderm in the chick embryo. Dev Biol 1992; 151:251–272.

    Article  PubMed  CAS  Google Scholar 

  79. Erickson CA, Goins TL. Avian neural crest cells can migrate in the dorsolateral path only if they are specified as melanocytes. Development 1995; 121:915–924.

    PubMed  CAS  Google Scholar 

  80. Andres G. Uber induction und entwicklung von kopforganen aus unkenektoderm im molch (epidermis, plakoden and derivate der nemalleiste). Rev Suisse Zool 1946; 53:502–510.

    Google Scholar 

  81. Andres G. Untersuchungen an chimaren von Triton und Bombinator. Genetics 1949; 24:387–534.

    Article  Google Scholar 

  82. Wagner G. Die bedeutung der neualleiste fur die kpfgestaltung der amphibienlarven. Rev Suisse Zool 1949; 56:519–620.

    Google Scholar 

  83. Wagner G. Untersuchungen an bombinator-triton-chimareren. Roux Arch Entwicklungsmech 1959; 151:136–158.

    Article  Google Scholar 

  84. Schneider RA, Helms JA. The cellular and molecular origins of beak morphology. Science 2003; 299(5606):565–568.

    Article  PubMed  CAS  Google Scholar 

  85. Tucker AS, Lumsden A. Neural crest cells provide species-specific patterning information in the developing branchial skeleton. Evol Dev 2004; 6:32–40.

    Article  PubMed  Google Scholar 

  86. Huysseune A, Sire JY. Evolution of patterns and processes in teeth and tooth-related tissues in nonmammalian vertebrates. Eur J Oral Sci 1998; 106(Suppl 1):437–481.

    PubMed  Google Scholar 

  87. Mina M, Kollar EJ. The induction of odontogenesis in nondental mesenchyme combined with early murine mandibular arch epithelium. Arch Oral Biol 1987; 32:123–127.

    Article  PubMed  CAS  Google Scholar 

  88. Kollar EJ, Fisher C. Tooth induction in chick epithelium: Expression of quiescent genes for enamel synthesis. Science 1980; 207:993–995.

    Article  PubMed  CAS  Google Scholar 

  89. Wang YH, Upholt WB, Sharpe PT et al. Odontogenic epithelium induces similar molecular responses in chick and mouse mandibular mesenchyme. Dev Dyn 1998; 213:386–397.

    Article  PubMed  CAS  Google Scholar 

  90. Kollar EJ, Mina M. Role of the early epithelium in the patterning of the teeth and Meckel’s cartilage. J Craniofac Genet Dev Biol 1991; 11:223–228.

    PubMed  CAS  Google Scholar 

  91. Mitsiadis TA, Cheraud Y, Sharpe P et al. Development of teeth in chick embryos after mouse neural crest transplantations. Proc Natl Acad Sci USA 2003; 100:6541–6545.

    Article  PubMed  CAS  Google Scholar 

  92. Veitch E, Begbie J, Schilling TF et al. Pharyngeal arch patterning in the absence of neural crest. Curr Biol 1999; 9(24):1481–1484.

    Article  PubMed  CAS  Google Scholar 

  93. Begbie J, Brunet JF, Rubenstein JL et al. Induction of the epibranchial placodes. Development 1999; 126(5):895–902.

    PubMed  CAS  Google Scholar 

  94. Gavalas A, Trainor P, Ariza-McNaughton L et al. Synergy between Hoxa1 and Hoxb1: The relationship between arch patterning and the generation of cranial neural crest. Development 2001; 128(15):3017–3027.

    PubMed  CAS  Google Scholar 

  95. Richman JM, Tickle C. Epithelial-mesenchymal interactions in the outgrowth of limb buds and facial primordia in chick embryos. Dev Biol 1992; 154:299–308.

    Article  PubMed  CAS  Google Scholar 

  96. Tucker A, Sharpe P. The cutting-edge of mammalian development; how the embryo makes teeth. Nat Rev Genet 2004; 5:499–508.

    Article  PubMed  CAS  Google Scholar 

  97. David NB, Saint-Etienne L, Tsang M et al. Requirement for endoderm and FGF3 in ventral head skeleton formation. Development 2002; 129:4457–4468.

    PubMed  CAS  Google Scholar 

  98. Piotrowski T, Nusslein-Volhard C. The endoderm plays an important role in patterning the segmented pharyngeal region in zebrafish (Danio rerio). Dev Biol 2000; 225(2):339–356.

    Article  PubMed  CAS  Google Scholar 

  99. Piotrowski T, Ahn DG, Schilling TF et al. The zebrafish van gogh mutation disrupts tbx1, which is involved in the DiGeorge deletion syndrome in humans. Development 2003; 130:5043–5052.

    Article  PubMed  CAS  Google Scholar 

  100. Golding JP, Dixon M, Gassmann M. Cues from neuroepithelium and surface ectoderm maintain neural crest-free regions within cranial mesenchyme of the developing chick. Develoment 2002; 129(5):1095–1105.

    CAS  Google Scholar 

  101. Hu D, Marcucio RS, Helms JA. A zone of frontonasal ectoderm regulates patterning and growth in the face. Development 2003; 130:1749–1758.

    Article  PubMed  CAS  Google Scholar 

  102. Barlow AJ, Francis-West PH. Ectopic application of recombinant BMP-2 and BMP-4 can change patterning of developing chick facial primordia. Development 1997; 124(2):391–398.

    PubMed  CAS  Google Scholar 

  103. Helms JA, Kim CH, Hu D et al. Sonic hedgehog participates in craniofacial morphogenesis and is down-regulated by teratogenic doses of retinoic acid. Dev Biol 1997; 187(1):25–35.

    Article  PubMed  CAS  Google Scholar 

  104. Richman JM, Herbert M, Matovinovic E et al. Effect of fibroblast growth factors on outgrowth of facial mesenchyme. Dev Biol 1997; 189:135–147.

    Article  PubMed  CAS  Google Scholar 

  105. Schneider RA, Hu D, Rubenstein JL et al. Local retinoid signaling coordinates forebrain and facial morphogenesis by maintaining FGF8 and SHH. Development 2001; 128(14):2755–2767.

    PubMed  CAS  Google Scholar 

  106. Chiang C, Litingtung Y, Lee E et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 1996; 383(6599):407–413.

    Article  PubMed  CAS  Google Scholar 

  107. Roessler E, Belloni E, Gaudenz K et al. Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nat Genet 1996; 14(3):357–360.

    Article  PubMed  CAS  Google Scholar 

  108. Hu D, Helms JA. The role of sonic hedgehog in normal and abnormal craniofacial morphogenesis. Development 1999; 126(21):4873–4884.

    PubMed  CAS  Google Scholar 

  109. Abzhanov A, Tabin CJ. Shh and Fgf8 act synergistically to drive cartilage outgrowth during cranial development. Dev Biol 2004; 273:134–148.

    Article  PubMed  CAS  Google Scholar 

  110. Lee SH, Fu KK, Hui JN et al. Noggin and retinoic acid transform the identity of avian facial prominences. Nature 2001; 414(6866):909–912.

    Article  PubMed  CAS  Google Scholar 

  111. Wu P, Jiang TX, Suksaweang S et al. Molecular shaping of the beak. Science 2004; 305:1465–1466.

    Article  PubMed  CAS  Google Scholar 

  112. Abzhanov A, Protas M, Grant BR et al. Bmp4 and morphological variation of beaks in Darwin’s finches. Science 2004; 305:1462–1465.

    Article  PubMed  CAS  Google Scholar 

  113. Tucker AS, Yamada G, Grigoriou M et al. Fgf-8 determines rostral-caudal polarity in the first branchial arch. Development 1999; 126(1):51–61.

    PubMed  CAS  Google Scholar 

  114. Trumpp A, Depew MJ, Rubenstein JL et al. Cremediated gene inactivation demonstrates that FGF8 is required for cell survival and patterning of the first branchial arch. Genes Dev 1999; 13(23):3136–3148.

    Article  PubMed  CAS  Google Scholar 

  115. Shigetani Y, Nobusada Y, Kuratani S. Ectodermally derived FGF8 defines the maxillomandibular region in the early chick embryo: Epithelial-mesenchymal interactions in the specification of the craniofacial ectomesenchyme. Dev Biol 2000; 228:73–85.

    Article  PubMed  CAS  Google Scholar 

  116. Abu-Issa R, Smyth G, Smoak I et al. Fgf8 is required for pharyngeal arch and cardiovascular development in the mouse. Development 2002; 129:4613–4625.

    PubMed  CAS  Google Scholar 

  117. Noden DM. The embryonic origins of avian cephalic and cervical muscles and associated connective tissues. Am J Anat 1983; 168(3):257–276.

    Article  PubMed  CAS  Google Scholar 

  118. Creuzet S, Schuler B, Couly G et al. Reciprocal relationships between Fgf8 and neural crest cells in facial and forebrain development. Proc Nad Acad Sci USA 2004; 101:4843–4847.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Trainor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Sandell, L.L., Trainor, P.A. (2006). Neural Crest Cell Plasticity. In: Saint-Jeannet, JP. (eds) Neural Crest Induction and Differentiation. Advances in Experimental Medicine and Biology, vol 589. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-46954-6_5

Download citation

Publish with us

Policies and ethics