Skip to main content

Molecular Bases of Human Neurocristopathies

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((volume 589))

Abstract

Neural crest cells (NCC) form in the human embryo during the third to fifth weeks of pregnancy, within the neural folds that delineate the neural plate from the ectoderm. During the fusion of the neural folds, which ultimately yields a tube that will become the central nervous system (CNS), NCC detach and become mesenchymal. They migrate throughout the body, integrating nearly every organ.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Le Douarin N, Kalcheim C. The Neural Crest. 2nd ed. Cambridge: Cambridge University Press, 1999.

    Google Scholar 

  2. Johnston MC. A radioautographic study of the migration and fate of cranial neural crest cells in the chick embryo. Anat Rec 1966;156(2):143–155.

    PubMed  CAS  Google Scholar 

  3. Le Lievre CS, Le Douarin NM. Mesenchymal derivatives of the neural crest: Analysis of chimaeric quail and chick embryos. J Embryol Exp Morphol 1975;34(1):125–154.

    PubMed  Google Scholar 

  4. Couly GF, Coltey PM, Le Douarin NM. The triple origin of skull in higher vertebrates: A study in quail-chick chimeras. Development 1993;117(2):409–429.

    PubMed  CAS  Google Scholar 

  5. Köntges G, Lumsden A. Rhombencephalic neural crest segmentation is preserved throughout craniofacial ontogeny. Development 1996;122(10):3229–3242.

    PubMed  Google Scholar 

  6. Noden DM. The role of the neural crest in patterning of avian cranial skeletal, connective, and muscle tissues. Dev Biol 1983;96(1):144–165.

    PubMed  CAS  Google Scholar 

  7. Bockman DE, Kirby ML. Dependence of thymus development on derivatives of the neural crest. Science 1984;223(4635):498–500.

    PubMed  CAS  Google Scholar 

  8. Bockman DE, Redmond ME, Waldo K et al. Effect of neural crest ablation on development of the heart and arch arteries in the chick. Am J Anat 1987;180(4):332–341.

    PubMed  CAS  Google Scholar 

  9. Etchevers HC, Vincent C, Le Douarin NM et al. The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain. Development 2001;128(7):1059–1068.

    PubMed  CAS  Google Scholar 

  10. Kruger GM, Morrison S. Neural crest stem cells persist in the adult gut but undergo changes in self-renewal, neuronal subtype potential, and factor responsiveness. Neuron 2002;35(4):657–669.

    PubMed  CAS  Google Scholar 

  11. Dupin E, Real C, Glavieux-Pardanaud C et al. Reversal of developmental restrictions in neural crest lineages: Transition from Schwann cells to glial-melanocytic precursors in vitro. Proc Natl Acad Sci USA 2003;100(9):5229–5233.

    PubMed  CAS  Google Scholar 

  12. Real C, Glavieux-Pardanaud C, Vaigot P et al. The instability of the neural crest phenotypes: Schwann cells can differentiate into myofibroblasts. Int J Dev Biol 2005;49(2–3):151–159.

    PubMed  CAS  Google Scholar 

  13. Trentin A, Glavieux-Pardanaud C, Le Douarin NM et al. Self-renewal capacity is a widespread property of various types of neural crest precursor cells. Proc Natl Acad Sci USA 2004;101(13):4495–4500.

    PubMed  CAS  Google Scholar 

  14. Liebl DJ, Tessarollo L, Palko ME et al. Absence of sensory neurons before target innervation in brain-derived neurotrophic factor-, neurotrophin 3-, and TrkC-deficient embryonic mice. J Neurosci 1997;17(23):9113–9121.

    PubMed  CAS  Google Scholar 

  15. Chalazonitis A. Neurotrophin-3 in the development of the enteric nervous system. Prog Brain Res 2004;146:243–263.

    PubMed  CAS  Google Scholar 

  16. Creuzet S, Couly G, Vincent C et al. Negative effect of Hox gene expression on the development of the neural crest-derived facial skeleton. Development 2002;129(18):4301–4313.

    PubMed  CAS  Google Scholar 

  17. Schneider RA, Helms JA. The cellular and molecular origins of beak morphology. Science 2003;299(5606):565–568.

    PubMed  CAS  Google Scholar 

  18. Ruhin B, Creuzet S, Vincent C et al. Patterning of the hyoid cartilage depends upon signals arising from the ventral foregut endoderm. Dev Dyn 2003;228(2):239–246.

    PubMed  CAS  Google Scholar 

  19. Couly G, Creuzet S, Bennaceur S et al. Interactions between Hox-negative cephalic neural crest cells and the foregut endoderm in patterning the facial skeleton in the vertebrate head. Development 2002;129(4):1061–1073.

    PubMed  CAS  Google Scholar 

  20. Bolande RP. The neurocristopathies: A unifying concept of disease arising in neural crest maldevelopment. Hum Pathol 1974;5:409–429.

    Google Scholar 

  21. Meulemans D, Bronner-Fraser M. Central role of gene cooption in neural crest evolution. J Exp Zoolog B Mol Dev Evol 2005;304B(4):298–303.

    CAS  Google Scholar 

  22. Jeffery WR, Strickler AG, Yamamoto Y. Migratory neural crest-like cells form body pigmentation in a urochordate embryo. Nature 2004;431(7009):696–699.

    PubMed  CAS  Google Scholar 

  23. Cebra-Thomas J, Tan F, Sistla S et al. How the turtle forms its shell: A paracrine hypothesis of carapace formation. J Exp Zoolog B Mol Dev Evol 2005.

    Google Scholar 

  24. Weinstein JL, Katzenstein HM, Cohn SL. Advances in the diagnosis and treatment of neuroblastoma. Oncologist 2003;8(3):278–292.

    PubMed  Google Scholar 

  25. Heutink P, van der Mey AG, Sandkuijl LA et al. A gene subject to genomic imprinting and responsible for hereditary paragangliomas maps to chromosome 11q23-qter. Hum Mol Genet 1992;1(1):7–10.

    PubMed  CAS  Google Scholar 

  26. Akhtar S, Oza KK, Wright J. Merkel cell carcinoma: Report of 10 cases and review of the literature. J Am Acad Dermatol 2000;43(5 Pt 1):755–767.

    PubMed  CAS  Google Scholar 

  27. Goessling W, McKee PH, Mayer RJ. Merkel cell carcinoma. J Clin Oncol 2002;20(2):588–598.

    PubMed  Google Scholar 

  28. Antoniades K, Giannouli T, Kaisaridou D. Merkel cell carcinoma in a patient with Recklinghausen neurofibromatosis. Int J Oral Maxillofac Surg 1998;27(3):213–214.

    PubMed  CAS  Google Scholar 

  29. Szeder V, Grim M, Halata Z et al. Neural crest origin of mammalian Merkel cells. Dev Biol 2003;253(2):258–263.

    PubMed  CAS  Google Scholar 

  30. Baker CV, Bronner-Fraser M. The origins of the neural crest. Part II: An evolutionary perspective. Mech Dev 1997;69(1–2):13–29.

    PubMed  CAS  Google Scholar 

  31. Detrait ER, George TM, Etchevers HC et al. Human neural tube defects: Developmental biology, epidemiology, and genetics. Neurotoxicol Teratol 2005;27(3):515–524.

    PubMed  CAS  Google Scholar 

  32. Swenson O, Sherman JO, Fisher JH et al. The treatment and postoperative complications of congenital megacolon: A 25 year followup. Ann Surg 1975;182(3):266–273.

    PubMed  CAS  Google Scholar 

  33. Passarge E. The genetics of Hirschsprung’s disease: Evidence for heterogeneous etiology and a study of sixty-three families. Eng J Med 1967;276:138–143.

    CAS  Google Scholar 

  34. Etchevers HC, Couly G, Le Douarin NM. Morphogenesis of the branchial vascular sector. Trends Cardiovasc Med 2002;12(7):299–304.

    PubMed  Google Scholar 

  35. Danarti R, Konig A, Happle R. Large congenital melanocytic nevi may reflect paradominant inheritance implying allelic loss. Eur J Dermatol 2003;13(5):430–432.

    PubMed  Google Scholar 

  36. Inoue K, Khajavi M, Ohyama T et al. Molecular mechanism for distinct neurological phenotypes conveyed by allelic truncating mutations. Nat Genet 2004;36(4):361–369.

    PubMed  CAS  Google Scholar 

  37. Amiel J, Laudier B, Attie-Bitach T et al. Polyalanine expansion and frameshirt mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome. Nat Genet 2003;33(4):459–461.

    PubMed  CAS  Google Scholar 

  38. Trochet D, Bourdeaut F, Janoueix-Lerosey I et al. Germline mutations of the paired-like homeobox 2B (PHOX2B) gene in neuroblastoma. Am J Hum Genet 2004;74(4):761–764.

    PubMed  CAS  Google Scholar 

  39. Etchevers HC, Vincent C, Couly GF. Neural crest and pituitary development. In: Rappaport R, ed. Hypothalamic-Pituitary Development: Genetic and Clinical Aspects. Basel: Karger, 2001:13–29.

    Google Scholar 

  40. Clifton-Bligh RJ, Wentworth JM, Heinz P et al. Mutation of the gene encoding human TTF-2 associated with thyroid agenesis, cleft palate and choanal atresia. Nat Genet 1998;19(4):399–401.

    PubMed  CAS  Google Scholar 

  41. Baker CV, Bronner-Fraser M. The origins of the neural crest. Part I: Embryonic induction. Mech Dev 1997;69(1–2):3–11.

    PubMed  CAS  Google Scholar 

  42. Huang X, Saint-Jeannet JP. Induction of the neural crest and the opportunities of life on the edge. Dev Biol 2004;275(1):1–11.

    PubMed  CAS  Google Scholar 

  43. Aybar MJ, Mayor R. Early induction of neural crest cells: Lessons learned from frog, fish and chick. Curr Opin Genet Dev 2002;12(4):452–458.

    PubMed  CAS  Google Scholar 

  44. Sato T, Sasai N, Sasai Y. Neural crest determination by coactivation of Pax3 and Zic1 genes in Xenopus ectoderm. Development 2005;132(10):2355–2363.

    PubMed  CAS  Google Scholar 

  45. Monsoro-Burq AH, Wang E, Harland R. Msx1 and Pax3 cooperate to mediate FGF8 and WNT signals during Xenopus neural crest induction. Dev Cell 2005;8(2):167–178.

    PubMed  CAS  Google Scholar 

  46. De Calisto J, Araya C, Marchant L et al. Essential role of noncanonical Wnt signalling in neural crest migration. Development 2005;132(11):2587–2597.

    PubMed  Google Scholar 

  47. Cheung M, Chaboissier MC, Mynett A et al. The transcriptional control of trunk neural crest induction, survival, and delamination. Dev Cell 2005;8(2):179–192.

    PubMed  CAS  Google Scholar 

  48. Lewis JL, Bonner J, Modrell M et al. Reiterated Wnt signaling during zebrafish neural crest development. Development 2004;131(6):1299–1308.

    PubMed  CAS  Google Scholar 

  49. Duprez D, Leyns L, Bonnin MA et al. Expression of Frzb-1 during chick development. Mech Dev 1999;89(1–2):179–183.

    PubMed  CAS  Google Scholar 

  50. Dow E, Cross S, Wolgemuth DJ et al. Second locus for Hirschsprung disease/Waardenburg syndrome in a large Mennonite kindred. Am J Med Genet 1994;53(1):75–80.

    PubMed  CAS  Google Scholar 

  51. Watanabe A, Takeda K, Ploplis B et al. Epistatic relationship between Waardenburg syndrome genes MITF and PAX3. Nat Genet 1998;18(3):283–286.

    PubMed  CAS  Google Scholar 

  52. Sanchez-Martin M, Rodriguez-Garcia A, Perez-Losada J et al. SLUG (SNAI2) deletions in patients with Waardenburg disease. Hum Mol Genet 2002;11(25):3231–3236.

    PubMed  CAS  Google Scholar 

  53. Pingault V, Bondurand N, Kuhlbrodt K et al. SOX10 mutations in patients with Waardenburg-Hirschsprung disease. Nat Genet 1998;18(2):171–173.

    PubMed  CAS  Google Scholar 

  54. Epstein DJ, Malo D, Vekemans M et al. Molecular characterization of a deletion encompassing the splotch mutation on mouse chromosome 1. Genomics 1991;10(1):89–93.

    PubMed  CAS  Google Scholar 

  55. Baldwin CT, Hoth CF, Macina RA et al. Mutations in PAX3 that cause Waardenburg syndrome type I: Ten new mutations and review of the literature. Am J Med Genet 1995;58(2):115–122.

    PubMed  CAS  Google Scholar 

  56. Sanchez-Martin M, Perez-Losada J, Rodriguez-Garcia A et al. Deletion of the SLUG (SNAI2) gene results in human piebaldism. Am J Med Genet A 2003;122(2):125–132.

    PubMed  Google Scholar 

  57. Perez-Mancera PA, Gonzalez-Herrero I, Perez-Caro M et al. SLUG in cancer development. Oncogene 2005;24(19):3073–3082.

    PubMed  CAS  Google Scholar 

  58. Locascio A, Manzanares M, Blanco MJ et al. Modularity and reshuffling of Snail and Slug expression during vertebrate evolution. Proc Natl Acad Sci USA 2002;99(26):16841–16846.

    PubMed  CAS  Google Scholar 

  59. Davy A, Aubin J, Soriano P. Ephrin-B1 forward and reverse signaling are required during mouse development. Genes Dev 2004;18(5):572–583.

    PubMed  CAS  Google Scholar 

  60. Britsch S, Li L, Kirchhoff S et al. The ErbB2 and ErbB3 receptors and their ligand, neuregulin-1, are essential for development of the sympathetic nervous system. Genes Dev 1998;12(12):1825–1836.

    PubMed  CAS  Google Scholar 

  61. Pla P, Alberti C, Solov’eva O et al. Ednrb2 orients cell migration towards the dorsolateral neural crest pathway and promotes melanocyte differentiation. Pigment Cell Res 2005;18(3):181–187.

    PubMed  CAS  Google Scholar 

  62. Zhu L, Lee HO, Jordan CS et al. Spatiotemporal regulation of endothelin receptor-B by SOX10 in neural crest-derived enteric neuron precursors. Nat Genet 2004;36(7):732–737.

    PubMed  CAS  Google Scholar 

  63. Duband JL, Rocher S, Chen WT et al. Cell adhesion and migration in the early vertebrate embryo: Location and possible role of the putative fibronectin receptor complex. J Cell Biol 1986;102(1):160–178.

    PubMed  CAS  Google Scholar 

  64. Kil SH, Krull CE, Cann G et al. The alpha4 subunit of integrin is important for neural crest cell migration. Dev Biol 1998;202(1):29–42.

    PubMed  CAS  Google Scholar 

  65. Delannet M, Martin F, Bossy B et al. Specific roles of the alpha V beta 1, alpha V beta 3 and alpha V beta 5 integrins in avian neural crest cell adhesion and migration on vitronectin. Development 1994;120(9):2687–2702.

    PubMed  CAS  Google Scholar 

  66. Parikh D, Tarn P, Van Velzen D et al. Abnormalities in the distribution of laminin and collagen type IV in Hirschsprung’s disease. Gastroenterology 1992;102:1236.

    PubMed  CAS  Google Scholar 

  67. Perris R, Syfrig J, Paulsson M et al. Molecular mechanisms of neural crest cell attachment and migration on types I and IV collagen. J Cell Sci 1993;106 (Pt 4):1357–1368.

    PubMed  CAS  Google Scholar 

  68. Lallier T, Bronner-Fraser M. Alpha 1 beta 1 integrin on neural crest cells recognizes some laminin substrata in a Ca(2+)-independent manner. J Cell Biol 1992;119(5):1335–1345.

    PubMed  CAS  Google Scholar 

  69. Desban N, Duband JL. Avian neural crest cell migration on laminin: Interaction of the alpha1beta1 integrin with distinct laminin-1 domains mediates different adhesive responses. J Cell Sci 1997;110 (Pt 21):2729–2744.

    PubMed  Google Scholar 

  70. Bednarczyk JL, McIntyre BW. Expression and ligand-binding function of the integrin alpha 4 beta 1 (VLA-4) on neural-crest-derived tumor cell lines. Clin Exp Metastasis 1992;10(4):281–290.

    PubMed  CAS  Google Scholar 

  71. Lallier TE, Whittaker CA, DeSimone DW. Integrin alpha 6 expression is required for early nervous system development in Xenopus laevis. Development 1996;122(8):2539–2554.

    PubMed  CAS  Google Scholar 

  72. Kil SH, Bronner-Fraser M. Expression of the avian alpha 7-integrin in developing nervous system and myotome. Int J Dev Neurosci 1996;14(3):181–190.

    PubMed  CAS  Google Scholar 

  73. Zimmer M, Palmer A, Kohler J et al. EphB-ephrinB bi-directional endocytosis terminates adhesion allowing contact mediated repulsion. Nat Cell Biol 2003;5(10):869–878.

    PubMed  CAS  Google Scholar 

  74. Huynh-Do U, Vindis C, Liu H et al. Ephrin-B1 transduces signals to activate integrin-mediated migration, attachment and angiogenesis. J Cell Sci 2002;115 (Pt 15):3073–3081.

    PubMed  CAS  Google Scholar 

  75. Wieland I, Reardon W, Jakubiczka S et al. Twenty-six novel EFNB1 mutations in familial and sporadic craniofrontonasal syndrome (CFNS). Hum Mutat 2005;26(2):113–118.

    PubMed  CAS  Google Scholar 

  76. Twigg SR, Kan R, Babbs C et al. Mutations of ephrin-B1 (EFNB1), a marker of tissue boundary formation, cause craniofrontonasal syndrome. Proc Natl Acad Sci USA 2004;101(23):8652–8657.

    PubMed  CAS  Google Scholar 

  77. Le Lievre CS, Schweizer GG, Ziller CM et al. Restrictions of developmental capabilities in neural crest cell derivatives as tested by in vivo transplantation experiments. Dev Biol 1980;77(2):362–378.

    PubMed  Google Scholar 

  78. Abzhanov A, Tzahor E, Lassar AB et al. Dissimilar regulation of cell differentiation in mesencephalic (cranial) and sacral (trunk) neural crest cells in vitro. Development 2003;130(19):4567–4579.

    PubMed  CAS  Google Scholar 

  79. Dupin E, Glavieux C, Vaigot P et al. Endothelin 3 induces the reversion of melanocytes to glia through a neural crest-derived glial-melanocytic progenitor. Proc Natl Acad Sci USA 2000;97(14):7882–7887.

    PubMed  CAS  Google Scholar 

  80. Stone JG, Spirling LI, Richardson MK. The neural crest population responding to endothelin-3 in vitro includes multipotent cells. J Cell Sci 1997;110 (Pt 14):1673–1682.

    PubMed  CAS  Google Scholar 

  81. Imokawa G, Yada Y, Miyagishi M. Endothelins secreted from human keratinocytes are intrinsic mitogens for human melanocytes. J Biol Chem 1992;267(34):24675–24680.

    PubMed  CAS  Google Scholar 

  82. Hosoda K, Hammer RE, Richardson JA et al. Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell 1994;79:1267.

    PubMed  CAS  Google Scholar 

  83. Puffenberger EG, Hosoda K, Washington SS et al. A missense mutation of the endothelin-B receptor gene in multigenic Hirschsprung’s disease. Cell 1994;79:1257–1266.

    PubMed  CAS  Google Scholar 

  84. Attie T, Till M, Pelet A et al. Mutation of the endothelin-receptor B gene in Waardenburg-Hirschsprung disease. Hum Mol Genet 1995;4(12):2407–2409.

    PubMed  CAS  Google Scholar 

  85. Amiel J, Attie T, Jan D et al. Heterozygous endothelin receptor B (EDNRB) mutations in isolated Hirschsprung disease. Hum Mol Genet 1996;5(3):355–357.

    PubMed  CAS  Google Scholar 

  86. Auricchio A, Griseri P, Carpentieri ML et al. Double heterozygosity for a RET substitution interfering with splicing and an EDNRB missense mutation in Hirschsprung disease. Am J Hum Genet 1999;64:1216.

    PubMed  CAS  Google Scholar 

  87. Bidaud C, Salomon R, Edery P et al. Mutations of the endothelin-3 gene in isolated and syndromic forms of Hirschsprung disease. Gastroenterol Clin Biol 1997;21(8–9):548–554.

    PubMed  CAS  Google Scholar 

  88. Edery P, Attie T, Amiel J et al. Mutation of the endothelin-3 gene in the Waardenburg-Hirschsprung disease (Shah-Waardenburg syndrome). Nat Genet 1996;12(4):442–444.

    PubMed  CAS  Google Scholar 

  89. Bolk S, Angrist M, Schwartz S et al. Congenital central hypoventilation syndrome: Mutation analysis of the receptor tyrosine kinase RET. Am J Med Genet 1996;63:603–610.

    PubMed  CAS  Google Scholar 

  90. Hu L, Shi Y, Hsu JH et al. Downstream effectors of oncogenic ras in multiple myeloma cells. Blood 2003;101(8):3126–3135.

    PubMed  CAS  Google Scholar 

  91. Wojnowski L, Zimmer AM, Beck TW et al. Endothelial apoptosis in Braf-deficient mice. Nat Genet 1997;16(3):293–297.

    PubMed  CAS  Google Scholar 

  92. Davies H, Bignell GR, Cox C et al. Mutations of the BRAF gene in human cancer. Nature 2002;417(6892):949–954.

    PubMed  CAS  Google Scholar 

  93. Brose MS, Volpe P, Feldman M et al. BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res 2002;62(23):6997–7000.

    PubMed  CAS  Google Scholar 

  94. Pollock PM, Harper UL, Hansen KS et al. High frequency of BRAF mutations in nevi. Nat Genet 2003;33(1):19–20.

    PubMed  CAS  Google Scholar 

  95. Patton EE, Widlund HR, Kutok JL et al. BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr Biol 2005;15(3):249–254.

    PubMed  CAS  Google Scholar 

  96. Tassabehji M, Newton VE, Read AP. Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene. Nat Genet 1994;8(3):251–255.

    PubMed  CAS  Google Scholar 

  97. Maroto M, Reshef R, Munsterberg AE et al. Ectopic Pax-3 activates MyoD and Myf-5 expression in embryonic mesoderm and neural tissue. Cell 1997;89(1):139–148.

    PubMed  CAS  Google Scholar 

  98. Galibert MD, Yavuzer U, Dexter TJ et al. Pax3 and regulation of the melanocyte-specific tyrosinase-related protein-1 promoter. J Biol Chem 1999;274(38):26894–26900.

    PubMed  CAS  Google Scholar 

  99. Relaix F, Polimeni M, Rocancourt D et al. The transcriptional activator PAX3-FKHR rescues the defects of Pax3 mutant mice but induces a myogenic gain-of-function phenotype with ligand-independent activation of Met signaling in vivo. Genes Dev 2003;17(23):2950–2965.

    PubMed  CAS  Google Scholar 

  100. Cheng Y, Cheung M, Abu-Elmagd MM et al. Chick sox10, a transcription factor expressed in both early neural crest cells and central nervous system. Brain Res Dev Brain Res 2000;121(2):233–241.

    PubMed  CAS  Google Scholar 

  101. Potterf SB, Furumura M, Dunn KJ et al. Transcription factor hierarchy in Waardenburg syndrome: Regulation of MITF expression by SOX10 and PAX3. Hum Genet 2000;107(1):1–6.

    PubMed  CAS  Google Scholar 

  102. Bondurand N, Pingault V, Goerich DE et al. Interaction among SOX10, PAX3 and MITF, three genes altered in Waardenburg syndrome. Hum Mol Genet 2000;9(13):1907–1917.

    PubMed  CAS  Google Scholar 

  103. Southard-Smith EM, Kos L, Pavan WJ. Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nat Genet 1998;18(1):60–64.

    PubMed  CAS  Google Scholar 

  104. Potterf SB, Mollaaghababa R, Hou L et al. Analysis of SOX10 function in neural crest-derived melanocyte development: SOX10-dependent transcriptional control of dopachrome tautomerase. Dev Biol 2001;237(2):245–257.

    PubMed  CAS  Google Scholar 

  105. Cantrell VA, Owens SE, Chandler RL et al. Interactions between Sox10 and EdnrB modulate penetrance and severity of aganglionosis in the Sox10Dom mouse model of Hirschsprung disease. Hum Mol Genet 2004;13(19):2289–2301.

    PubMed  CAS  Google Scholar 

  106. Owens SE, Broman KW, Wiltshire T et al. Genome-wide linkage identifies novel modifier loci of aganglionosis in the Sox10Dom model of Hirschsprung disease. Hum Mol Genet 2005;14(11):1549–1558.

    PubMed  CAS  Google Scholar 

  107. Campuzano S, Modolell J. Patterning of the Drosophila nervous system: The achaete-scute gene complex. Trends Genet 1992;8(6):202–208.

    PubMed  CAS  Google Scholar 

  108. Johnson JE, Birren SJ, Anderson DJ. Two rat homologues of Drosophila achaete-scute specifically expressed in neuronal precursors. Nature 1990;346(6287):858–861.

    PubMed  CAS  Google Scholar 

  109. Guillemot F, Caspary T, Tilghman SM et al. Genomic imprinting of Mash2, a mouse gene required for trophoblast development. Nat Genet 1995;9(3):235–242.

    PubMed  CAS  Google Scholar 

  110. Guillemot F, Joyner AL. Dynamic expression of the murine Achaete-Scute homologue Mash-1 in the developing nervous system. Mech Dev 1993;42(3):171–185.

    PubMed  CAS  Google Scholar 

  111. Lo LC, Johnson JE, Wuenschell CW et al. Mammalian achaete-scute homolog 1 is transiently expressed by spatially restricted subsets of early neuroepithelial and neural crest cells. Genes Dev 1991;5(9):1524–1537.

    PubMed  CAS  Google Scholar 

  112. Guillemot F, Lo LC, Johnson JE et al. Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 1993;75(3):463–476.

    PubMed  CAS  Google Scholar 

  113. Parras CM, Galli R, Britz O et al. Mash1 specifies neurons and oligodendrocytes in the postnatal brain. EMBO J 2004;23(22):4495–4505.

    PubMed  CAS  Google Scholar 

  114. Pattyn A, Simplicio N, van Doorninck JH et al. Ascl1/Mash1 is required for the development of central serotonergic neurons. Nat Neurosci 2004;7(6):589–595.

    PubMed  CAS  Google Scholar 

  115. Pattyn A, Morin X, Cremer H et al. Expression and interactions of the two closely related homeobox genes Phox2a and Phox2b during neurogenesis. Development 1997;124(20):4065–4075.

    PubMed  CAS  Google Scholar 

  116. Pattyn A, Morin X, Cremer H et al. The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 1999;399(6734):366–370.

    PubMed  CAS  Google Scholar 

  117. Hong SJ, Kim CH, Kim KS. Structural and functional characterization of the 5’ upstream promoter of the human Phox2a gene: Possible direct transactivation by transcription factor Phox2b. J Neurochem 2001;79(6):1225–1236.

    PubMed  CAS  Google Scholar 

  118. Hirsch MR, Tiveron MC, Guillemot F et al. Control of noradrenergic differentiation and Phox2a expression by MASH1 in the central and peripheral nervous system. Development 1998;125(4):599–608.

    PubMed  CAS  Google Scholar 

  119. Trochet D, O’Brien LM, Gozal D et al. PHOX2B genotype allows for prediction of tumor risk in congenital central hypoventilation syndrome. Am J Hum Genet 2005;76(3):421–426.

    PubMed  CAS  Google Scholar 

  120. Yang C, Kim HS, Seo H et al. Paired-like homeodomain proteins, Phox2a and Phox2b, are responsible for noradrenergic cell-specific transcription of the dopamine beta-hydroxylase gene. J Neurochem 1998;71(5):1813–1826.

    PubMed  CAS  Google Scholar 

  121. Brosenitsch TA, Katz DM. Expression of Phox2 transcription factors and induction of the dopaminergic phenotype in primary sensory neurons. Mol Cell Neurosci 2002;20(3):447–457.

    PubMed  CAS  Google Scholar 

  122. Dauger S, Pattyn A, Lofaso F et al. Phox2b controls the development of peripheral chemoreceptors and afferent visceral pathways. Development 2003;130(26):6635–6642.

    PubMed  CAS  Google Scholar 

  123. Durand E, Dauger S, Pattyn A et al. Sleep-disordered breathing in newborn mice heterozygous for the transcription factor Phox2b. Am J Respir Crit Care Med 2005;172(2):238–243.

    PubMed  Google Scholar 

  124. Gabriel SB, Salomon R, Pelet A et al. Segregation at three loci explains familial and population risk in Hirschsprung disease. Nat Genet 2002;31(1):89–93.

    PubMed  CAS  Google Scholar 

  125. Edery P, Lyonnet S, Mulligan LM et al. Mutations of the RET proto-oncogene in Hirschsprung’s disease. Nature 1994;367:378–380.

    PubMed  CAS  Google Scholar 

  126. Mulligan L, Kwok JB, Healey CS et al. Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature 1993;363(6428):458–460.

    PubMed  CAS  Google Scholar 

  127. Mulligan LM, Eng C, Attie T et al. Diverse phenotypes associated with exon 10 mutations of the RET proto-oncogene. Hum Mol Genet 1994;3(12):2163–2167.

    PubMed  CAS  Google Scholar 

  128. Hofstra R, Landsvater RM, Ceccherini I et al. A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature 1994;367:375.

    PubMed  CAS  Google Scholar 

  129. Carlson K, Dou S, Chi D et al. Single missense mutation in the tyrosine kinase catalytic domain of the RET protooncogene is associated with multiple endocrine neoplasia type 2B. Proc Natl Acad Sci USA 1994;15:1579.

    Google Scholar 

  130. Edery P, Eng C, Munnich A et al. RET in human development and oncogenesis. Bioessays 1997;19(5):389–395.

    PubMed  CAS  Google Scholar 

  131. Luo Y, Ceccherini I, Pasini B et al. Close linkage with the RET protooncogene and boundaries of deletion mutations in autosomal dominant Hirschsprung disease. Hum Mol Genet 1993;2:1803.

    PubMed  CAS  Google Scholar 

  132. Takahashi M, Iwashita T, Santoro M et al. Cosegregation of MEN 2 and Hirschsprung’s disease: The same mutation of RET with both gain and loss-of-function? Hum Mutat 1999;13(4):331–336.

    PubMed  CAS  Google Scholar 

  133. Durbec PL, Larsson-Blomberg LB, Schuchardt A et al. Common origin and developmental dependence on c-ret of subsets of enteric and sympathetic neuroblasts. Development 1996;122(1):349–358.

    PubMed  CAS  Google Scholar 

  134. Durbec P, Marcos-Gutierrez CV, Kilkenny C et al. GDNF signalling through the Ret receptor tyrosine kinase. Nature 1996;381(6585):789–793.

    PubMed  CAS  Google Scholar 

  135. Attie-Bitach T, Abitbol M, Gerard M et al. Expression of the RET proto-oncogene in human embryos. Am J Med Genet 1998;80(5):481–486.

    PubMed  CAS  Google Scholar 

  136. Ivanchuk SM, Myers SM, Eng C et al. De novo mutation of GDNF, ligand for the RET/GDNFR-alpha receptor complex, in Hirschsprung disease. Hum Mol Genet 1996;5(12):2023–2026.

    PubMed  CAS  Google Scholar 

  137. Angrist M, Jing S, Bolk S et al. Human GFRA1: Cloning, mapping, genomic structure, and evaluation as a candidate gene for Hirschsprung disease susceptibility. Genomics 1998;48(3):354–362.

    PubMed  CAS  Google Scholar 

  138. Myers SM, Salomon R, Goessling A et al. Investigation of germline GFR alpha-1 mutations in Hirschsprung disease. J Med Genet 1999;36(3):217–220.

    PubMed  CAS  Google Scholar 

  139. Borrego S, Fernandez RM, Dziema H et al. Investigation of germline GFRA4 mutations and evaluation of the involvement of GFRA1, GFRA2, GFRA3, and GFRA4 sequence variants in Hirschsprung disease. J Med Genet 2003;40(3):e18.

    PubMed  CAS  Google Scholar 

  140. Sariola H, Saarma M. Novel functions and signalling pathways for GDNF. J Cell Sci 2003;116 (Pt 19):3855–3862.

    PubMed  CAS  Google Scholar 

  141. Doray B, Salomon R, Amiel J et al. Mutation of the RET ligand, neurturin, supports multigenic inheritance in Hirschsprung disease. Hum Mol Genet 1998;7(9):1449–1452.

    PubMed  CAS  Google Scholar 

  142. Carrasquillo MM, McCallion AS, PufFenberger EG et al. Genome-wide association study and mouse model identify interaction between RET and EDNRB pathways in Hirschsprung disease. Nat Genet 2002;32(2):237–244.

    PubMed  CAS  Google Scholar 

  143. McCallion AS, Stames E, Conlon RA et al. Phenotype variation in two-locus mouse models of Hirschsprung disease: Tissue-specific interaction between Ret and Ednrb. Proc Natl Acad Sci USA 2003;100(4):1826–1831.

    PubMed  CAS  Google Scholar 

  144. Pritchard CA, Bolin L, Slattery R et al. Post-natal lethality and neurological and gastrointestinal defects in mice with targeted disruption of the A-Raf protein kinase gene. Curr Biol 1996;6(5):614–617.

    PubMed  CAS  Google Scholar 

  145. Mercer K, Chiloeches A, Huser M et al. ERK signalling and oncogene transformation are not impaired in cells lacking A-Raf. Oncogene 2002;21(3):347–355.

    PubMed  CAS  Google Scholar 

  146. Kirby ML, Gale TF, Stewart DE. Neural crest cells contribute to normal aorticopulmonary septation. Science 1983;220(4601):1059–1061.

    PubMed  CAS  Google Scholar 

  147. Halilagic A, Zile MH, Studer M. A novel role for retinoids in patterning the avian forebrain during presomite stages. Development 2003;130(10):2039–2050.

    PubMed  CAS  Google Scholar 

  148. Bohnsack BL, Lai L, Dolle P et al. Signaling hierarchy downstream of retinoic acid that independently regulates vascular remodeling and endothelial cell proliferation. Genes Dev 2004;18(11):1345–1358.

    PubMed  CAS  Google Scholar 

  149. Santagati F, Rijli FM. Cranial neural crest and the building of the vertebrate head. Nat Rev Neurosci 2003;4(10):806–818.

    PubMed  CAS  Google Scholar 

  150. Schneider RA, Hu D, Rubenstein JL et al. Local retinoid signaling coordinates forebrain and facial morphogenesis by maintaining FGF8 and SHH. Development 2001;128(14):2755–2767.

    PubMed  CAS  Google Scholar 

  151. Abu-Issa R, Smyth G, Smoak I et al. Fgf8 is required for pharyngeal arch and cardiovascular development in the mouse. Development 2002;129(19):4613–4625.

    PubMed  CAS  Google Scholar 

  152. Lazaro L, Dubourg C, Pasquier L et al. Phenotypic and molecular variability of the holoprosencephalic spectrum. Am J Med Genet A 2004;129(1):21–24.

    PubMed  Google Scholar 

  153. Etchevers HC, Couly G, Vincent C et al. Anterior cephalic neural crest is required for forebrain viability. Development 1999;126(16):3533–3543.

    PubMed  CAS  Google Scholar 

  154. Blader P, Strahle U. Ethanol impairs migration of the prechordal plate in the zebrafish embryo. Dev Biol 1998;201(2):185–201.

    PubMed  CAS  Google Scholar 

  155. Barr Jr M, Hanson JW, Currey K et al. Holoprosencephaly in infants of diabetic mothers. J Pediatr 1983;102(4):565–568.

    PubMed  Google Scholar 

  156. Creuzet S, Schuler B, Couly G et al. Reciprocal relationships between Fgf8 and neural crest cells in facial and forebrain development. Proc Natl Acad Sci USA 2004;101(14):4843–4847.

    PubMed  CAS  Google Scholar 

  157. Frank DU, Fotheringham LK, Brewer JA et al. An Fgf8 mouse mutant phenocopies human 22q11 deletion syndrome. Development 2002;129(19):4591–4603.

    PubMed  CAS  Google Scholar 

  158. Boulet AM, Moon AM, Arenkiel BR et al. The roles of Fgf4 and Fgf8 in limb bud initiation and outgrowth. Dev Biol 2004;273(2):361–372.

    PubMed  CAS  Google Scholar 

  159. Jerome LA, Papaioannou VE. DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. Nat Genet 2001;27(3):286–291.

    PubMed  CAS  Google Scholar 

  160. Lindsay EA, Vitelli F, Su H et al. Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 2001;410(6824):97–101.

    PubMed  CAS  Google Scholar 

  161. Merscher S, Funke B, Epstein JA et al. TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell 2001;104(4):619–629.

    PubMed  CAS  Google Scholar 

  162. Yamagishi H, Maeda J, Hu T et al. Tbx1 is regulated by tissue-specific forkhead proteins through a common Sonic hedgehog-responsive enhancer. Genes Dev 2003;17(2):269–281.

    PubMed  CAS  Google Scholar 

  163. Yagi H, Furutani Y, Hamada H et al. Role of TBX1 in human del22q11.2 syndrome. Lancet 2003;362(9393):1366–1373.

    PubMed  CAS  Google Scholar 

  164. Baldini A. Dissecting contiguous gene defects: TBX1. Curr Opin Genet Dev 2005;15(3):279–284.

    PubMed  CAS  Google Scholar 

  165. Vitelli F, Taddei I, Morishima M et al. A genetic link between Tbx1 and fibroblast growth factor signaling. Development 2002;129(19):4605–4611.

    PubMed  CAS  Google Scholar 

  166. Xu H, Morishima M, Wylie JN et al. Tbx1 has a dual role in the morphogenesis of the cardiac outflow tract. Development 2004;131(13):3217–3227.

    PubMed  CAS  Google Scholar 

  167. Kelly RG, Brown NA, Buckingham ME. The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev Cell 2001;1(3):435–440.

    PubMed  CAS  Google Scholar 

  168. Tzahor E, Kempf H, Mootoosamy RC et al. Antagonists of Wnt and BMP signaling promote the formation of vertebrate head muscle. Genes Dev 2003;17(24):3087–3099.

    PubMed  CAS  Google Scholar 

  169. Hall BD. Choanal atresia and associated multiple anomalies. J Pediatr 1979;95(3):395–398.

    PubMed  CAS  Google Scholar 

  170. Vissers LE, van Ravenswaaij CM, Admiraal R et al. Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat Genet 2004;36(9):955–957.

    PubMed  CAS  Google Scholar 

  171. Sanlaville D, Etchevers HC, Gonzales M et al. Phenotypic spectrum of CHARGE syndrome in fetuses with CHD7 truncating mutations correlates with expression during human development. J Med Genet 2005; doi:10.1136/jmg.2005.036160.

    Google Scholar 

  172. Jones DO, Cowell IG, Singh PB. Mammalian chromodomain proteins: Their role in genome organisation and expression. Bioessays 2000;22(2):124–137.

    PubMed  CAS  Google Scholar 

  173. Brehm A, Tufteland KR, Aasland R et al. The many colours of chromodomains. Bioessays 2004;26(2):133–140.

    PubMed  CAS  Google Scholar 

  174. Isono K, Fujimura Y, Shinga J et al. Mammalian polyhomeotic homologues phc2 and phc1 act in synergy to mediate polycomb repression of hox genes. Mol Cell Biol 2005;25(15):6694–6706.

    PubMed  CAS  Google Scholar 

  175. Wade PA, Jones PL, Vermaak D et al. Histone deacetylase directs the dominant silencing of transcription in chromatin: Association with MeCP2 and the Mi-2 chromodomain SWI/SNF ATPase. Cold Spring Harb Symp Quant Biol 1998;63:435–445.

    PubMed  CAS  Google Scholar 

  176. Dunn MK, Mercola M, Moore DD. Cyclopamine, a steroidal alkaloid, disrupts development of cranial neural crest cells in Xenopus. Dev Dyn 1995;202(3):255–270.

    PubMed  CAS  Google Scholar 

  177. Etchevers HC. Early expression of hypoxia-inducible factor 1alpha in the chicken embryo. Gene Expr Patterns 2003;3(1):49–52.

    PubMed  CAS  Google Scholar 

  178. Bruyere Jr HJ, Stith CE, Thorn TA. Cardioteratogenic dose of ethanol reduces both lactic dehydrogenase and succinic dehydrogenase activity in the bulbar ridges of the embryonic chick heart. J Appl Toxicol 1994;14(1):27–31.

    PubMed  CAS  Google Scholar 

  179. Maher ER, Eng C. The pressure rises: Update on the genetics of phaeochromocytoma. Hum Mol Genet 2002;11(20):2347–2354.

    PubMed  CAS  Google Scholar 

  180. Phillips JC, del Bono EA, Haines JL et al. A second locus for Rieger syndrome maps to chromosome 13ql4. Am J Hum Genet 1996;59(3):613–619.

    PubMed  CAS  Google Scholar 

  181. Barr FG, Galili N, Holick J et al. Rearrangement of the PAX3 paired box gene in the paediatric solid tumour alveolar rhabdomyosarcoma. Nat Genet 1993;3(2):113–117.

    PubMed  CAS  Google Scholar 

  182. De Craene B, van Roy F, Berx G. Unraveling signalling cascades for the Snail family of transcription factors. Cell Signal 2005;17(5):535–547.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather C. Etchevers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Etchevers, H.C., Amiel, J., Lyonnet, S. (2006). Molecular Bases of Human Neurocristopathies. In: Saint-Jeannet, JP. (eds) Neural Crest Induction and Differentiation. Advances in Experimental Medicine and Biology, vol 589. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-46954-6_14

Download citation

Publish with us

Policies and ethics