Skip to main content

Land Surface Roughness

  • Reference work entry
  • First Online:
Encyclopedia of Remote Sensing

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 287 Accesses

Synonyms

Microrelief; Microtopography

Definition

Surface roughness is usually defined at the human scales of centimeter to a few meter; larger scales are usually considered as topography. Relief at these scales is familiar to field geologists working at the outcrop scale and those interested in interpretation of landforms and earth-surface processes that form and modify them.

Scientific usefulness

One important surficial geologic process is aeolian erosion, transport, and deposition of sediments. The shear stress wind produces at the earth's surface is strongly affected by the surface roughness. The aerodynamic roughness parameter, z0, depends on the wind speed profile as a function of height about the ground (Greeley et al., 1997). This parameter is used by geologists interested in aeolian processes as well as climatologists seeking to quantify atmospheric coupling with the solid earth.

Windblown dust and sand can also modify surface roughness by mantling and attenuating surface...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 329.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Adams, J. B., and Gillespie, A. R., 2006. Remote Sensing of Landscapes with Spectral Images: a Physical Modeling Approach. Cambridge, UK: Cambridge University Press, p. 362.

    Google Scholar 

  • Arvidson, R. E., Shepard, M. K., Guinness, E. A., Petroy, S. B., Plaut, J. J., Evans, D. L., Farr, T. G., Greeley, R., Lancaster, N., and Gaddis, L. R., 1993. Characterization of lava-flow degradation in the Pisgah and Cima volcanic fields, California, using Landsat Thematic Mapper and AIRSAR data. Geological Society of America Bulletin, 105, 175–188.

    Google Scholar 

  • Austin, R. T., England, A. W., and Wakefield, G. H., 1994. Special problems in the estimation of power-law spectra as applied to topographical modeling. IEEE Transactions on Geoscience and Remote Sensing, 32, 928–939.

    Google Scholar 

  • Bendat, J. S., and Piersol, A. G., 1986. Random Data, Analysis and Measurement Procedures, 2nd edn. New York: Wiley, p. 566.

    Google Scholar 

  • Berry, M. V., and Hannay, J. H., 1978. Topography of random surfaces, comment and reply. Nature, 273, 573.

    Google Scholar 

  • Brown, S. R., 1985. A note on the description of surface roughness using fractal dimension. Geophysical Research Letters, 14, 1095–1098.

    Google Scholar 

  • Brown, S. R., and Scholz, C. H., 1985. Broad bandwidth study of the topography of natural rock surfaces. Journal of Geophysical Research, 90, 12575–12582.

    Google Scholar 

  • Butler, J. B., Lane, S. N., and Chandler, J. H., 2001. Characterization of the structure of river-bed gravels using two-dimensional fractal analysis. Mathematical Geology, 33, 301–330.

    Google Scholar 

  • Campbell, B. A., 2002. Radar Remote Sensing of Planetary Surfaces. Cambridge, UK: Cambridge University Press, p. 331.

    Google Scholar 

  • Dierking, W., 1999. Quantitative roughness characterization of geological surfaces and implications for radar signature analysis. IEEE Transactions on Geoscience and Remote Sensing, 37, 2397–2412.

    Google Scholar 

  • Dubois, P. C., vanZyl, J., and Engman, T., 1995. Measuring soil moisture with imaging radar. IEEE Transactions on Geoscience and Remote Sensing, 33, 915–926.

    Google Scholar 

  • Evans, D. L., Farr, T. G., and van Zyl, J. J., 1992. Estimates of surface roughness derived from synthetic aperture radar (SAR) data. IEEE Transactions on Geoscience and Remote Sensing, 30, 382–389.

    Google Scholar 

  • Farr, T. G., 1992. Microtopographic evolution of lava flows at Cima volcanic field, Mojave Desert, California. Journal of Geophysical Research, 97, 15171–15179.

    Google Scholar 

  • Farr, T. G., and Chadwick, O. A., 1996. Geomorphic processes and remote sensing signatures of alluvial fans in the Kun Lun Mountains, China. Journal of Geophysical Research, 101, 23091–23100.

    Google Scholar 

  • Goff, J. A., 1990. Comment on “Fractal mapping of digitized images: application to the topography of Arizona and comparisons with synthetic images”. Journal of Geophysical Research, 95, 5159–5161.

    Google Scholar 

  • Greeley, R., Blumberg, D., McHone, J. F., Dobrovolskis, A., Iversen, J. D., Lancaster, N., Rasmussen, K. R., Wall, S. D., and White, B. R., 1997. Application of spaceborne radar laboratory data to the study of aeolian processes. Journal of Geophysical Research, 102, 10,971–10,983.

    Google Scholar 

  • Henderson, F. M., and Lewis, A. J. (eds.), 1998. Principles and Applications of Imaging Radar, Manual of Remote Sensing. New York: Wiley, Vol. 2, p. 866.

    Google Scholar 

  • Huang, J., and Turcotte, D. L., 1989. Fractal mapping of digitized images: application to the topography of Arizona and comparisons with synthetic images. Journal of Geophysical Research, 94, 7491–7495.

    Google Scholar 

  • Huang, J., and Turcotte, D. L., 1990. Fractal image analysis: application to the topography of Oregon and synthetic images. Journal of the Optical Society of America, 7, 1124–1130.

    Google Scholar 

  • Lescinsky, D. T., Skoblenick, S. V., and Mansinha, L., 2007. Automated identification of lava flow structures using local Fourier spectrum of digital elevation data. Journal of Geophysical Research, 112, doi:10.1029/2006JB004263.

    Google Scholar 

  • Morris, A. R., Anderson, F. S., Mouginis-Mark, P. J., Haldemann, A. F. C., Brooks, B. A., and Foster, J., 2008. The roughness of Hawaiian volcanic terrains. Journal of Geophysical Research, 113, E12007.

    Google Scholar 

  • Shepard, M. K., Campbell, B. A., Bulmer, M. H., Farr, T. G., Gaddis, L. R., and Plaut, J. J., 2001. The roughness of natural terrain: a planetary and remote sensing perspective. Journal of Geophysical Research, 106, 32,777–32,795.

    Google Scholar 

  • Thomas, T. R., 1999. Rough Surfaces. London: Imperial College London, p. 278.

    Google Scholar 

  • Tsang, L., Kong, J. A., and Ding, K. H., 2000. Scattering of Electromagnetic Waves: Theories and Applications. New York: Wiley, p. 426.

    Google Scholar 

  • Ulaby, F. T., Moore, R. K., and Fung, A. K., 1982. Microwave Remote Sensing. Reading: Addison-Wesley, Vol. 1, 2, 3, p. 2162.

    Google Scholar 

  • van Zyl, J. J., Burnette, C. F., and Farr, T. G., 1991. Inference of surface power spectra from inversion of multifrequency polarimetric radar data. Geophysical Research Letters, 18, 1787–1790.

    Google Scholar 

  • Wall, S. D., Farr, T. G., Muller, J.-P., Lewis, P., and Leberl, F. W., 1991. Measurement of surface microtopography. Photogrammetric Engineering and Remote Sensing, 57, 1075–1078.

    Google Scholar 

Download references

Acknowledgment

This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Farr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Farr, T. (2014). Land Surface Roughness. In: Njoku, E.G. (eds) Encyclopedia of Remote Sensing. Encyclopedia of Earth Sciences Series. Springer, New York, NY. https://doi.org/10.1007/978-0-387-36699-9_76

Download citation

Publish with us

Policies and ethics