Skip to main content

Branching Processes

  • Reference work entry

Definition of the Subject

Consider the fate of a human population on a small, isolated island. It consists of a certain number of individuals, and the mostobvious question, of importance in particular for the inhabitants of the island, is whether this number will go to zero. Humans die and reproduce in stepsof one, and therefore one can try to analyze this fate mathematically by writing down what is called master equations, to describe the dynamics asa “branching process ” (BP). The branching here means that if at time \( { t=0 } \) there are N humans, at the next step\( { t=1 } \) there can be \( { N-1 } \) (or \( { N+1 } \) or \( { N+2 }\) if the only change from \( { t=0 }\) was that a pair of twins was born). The outcome will depend in the simplest case on a “branchingnumber”, or the number of offspring λ that a human being will have [1,2,3,4].

If the offspring created are too few, then the population will decay, or reach an “absorbing state” out of which it will neverescape....

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Markov process:

A  process characterized by a set of probabilities to go from a certain state at time t to another state at time \( { t+1 } \). These transition probabilities are independent of the history of the process and only depend on a fixed probability assigned to the transition.

Critical properties and scaling:

The behavior of equilibrium and many non‐equilibrium systems in steady states contain critical points where the systems display scale invariance and the correlation functions exhibit an algebraic behavior characterized by so‐called critical exponents. A characteristics of this type of behavior is the lack of finite length and time scales (also reminiscent of fractals). The behavior near the critical points can be described by scaling functions that are universal and that do not depend on the detailed microscopic dynamics.

Avalanches:

When a system is perturbed in such a way that a disturbance propagates throughout the system one speak of an avalanche. The local avalanche dynamics may either conserve energy (particles) or dissipate energy. The avalanche may also loose energy when it reaches the system boundary. In the neighborhood of a critical point the avalanche distribution is described by a power‐law distribution.

Self‐organized criticality (SOC):

SOC is the surprising “critical” state in which many systems from physics to biology to social ones find themselves. In physics jargon, they exhibit scale‐invariance, which means that the dynamics – consisting of avalanches – has no typical scale in time or space. The really necessary ingredient is that there is a hidden, fine‐tuned balance between how such systems are driven to create the dynamic response, and how they dissipate the input (“energy”) to still remain in balance.

Networks:

These are descriptions of interacting systems, where in graph theoretical language nodes or vertices are connected by links or edges. The interesting thing can be the structure of the network, and its dynamics, or that of a process on the top of it like the spreading of computer viruses on the Internet.

Bibliography

Primary Literature

  1. Harris TE (1989) The Theory of Branching Processes. Dover, New York

    Google Scholar 

  2. Kimmel M, Axelrod DE (2002) Branching Processes in Biology. Springer, New York

    MATH  Google Scholar 

  3. Athreya KB, Ney PE (2004) Branching Processes. Dover Publications, Inc., Mineola

    Google Scholar 

  4. Haccou P, Jagers P, Vatutin VA (2005) Branching Processes: Variation, Growth, and Extinction of Populations. Cambridge University Press, Cambridge

    Google Scholar 

  5. Manna SS (1991) J Phys A 24:L363. In this two‐state model, the energy takes the two stable values, \( { z_i=0 } \) (empty) and \( { z_i=1 } \) (particle). When \( { z_i \ge z_\mathrm{c} } \), with \( { z_\mathrm{c}=2 } \), the site relaxes by distributing two particles to two randomly chosen neighbors

    Google Scholar 

  6. Dickman R, Alava MJ, Munoz MA, Peltola J, Vespignani A, Zapperi S (2001) Phys Rev E64:056104

    ADS  Google Scholar 

  7. Bak P, Tang C, Wiesenfeld K (1987) Phys Rev Lett 59:381; (1988) Phys Rev A 38:364

    Google Scholar 

  8. Tebaldi C, De Menech M, Stella AL (1999) Phys Rev Lett 83:3952

    ADS  Google Scholar 

  9. Stella AL, De Menech M (2001) Physica A 295:1001

    Google Scholar 

  10. Vespignani A, Dickman R, Munoz MA, Zapperi S (2000) Phys Rev E 62:4564

    ADS  Google Scholar 

  11. Dickman R, Munoz MA, Vespignani A, Zapperi S (2000) Braz J Phys 30:27

    ADS  Google Scholar 

  12. Alava M (2003) Self‐Organized Criticality as a Phase Transition. In: Korutcheva E, Cuerno R (eds) Advances in Condensed Matter and Statistical Physics. arXiv:cond-mat/0307688,(2004) Nova Publishers, p 45

    Google Scholar 

  13. Lubeck S (2004) Int J Mod Phys B18:3977

    ADS  Google Scholar 

  14. Jensen HJ (1998) Self‐Organized Criticality. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  15. Alava MJ, Nukala PKNN, Zapperi S (2006) Statistical models of fracture. Adv Phys 55:349–476

    ADS  Google Scholar 

  16. Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47

    Google Scholar 

  17. Dorogovtsev SN, Mendes JFF (2003) Evolution of Networks: From Biological Nets to the Internet and WWW. Oxford University Press, Oxford; (2002) Adv Phys 51:1079; (2004) arXiv:cond-mat/0404593

    Google Scholar 

  18. Bonachela JA, Chate H, Dornic I, Munoz MA (2007) Phys Rev Lett 98:115702

    Google Scholar 

  19. Feller W (1971) An Introduction to Probability Theory and its Applications. vol 2, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  20. Asmussen S, Hering H (1983) Branching Processes. Birkhäuser, Boston

    MATH  Google Scholar 

  21. Weiss GH (1994) Aspects and Applications of the Random Walk. North‐Holland, Amsterdam

    MATH  Google Scholar 

  22. Tang C, Bak P (1988) J Stat Phys 51:797

    MathSciNet  ADS  MATH  Google Scholar 

  23. Dhar D, Majumdar SN (1990) J Phys A 23:4333

    MathSciNet  ADS  Google Scholar 

  24. Janowsky SA, Laberge CA (1993) J Phys A 26:L973

    MathSciNet  ADS  Google Scholar 

  25. Flyvbjerg H, Sneppen K, Bak P (1993) Phys Rev Lett 71:4087; de Boer J, Derrida B, Flyvbjerg H, Jackson AD, Wettig T (1994) Phys Rev Lett 73:906

    Google Scholar 

  26. Alstrøm P (1988) Phys Rev A 38:4905

    Google Scholar 

  27. Christensen K, Olami Z (1993) Phys Rev E 48:3361

    ADS  Google Scholar 

  28. García-Pelayo R (1994) Phys Rev E 49:4903

    Google Scholar 

  29. Zapperi S, Lauritsen KB, Stanley HE (1995) Phys Rev Lett 75:4071

    ADS  Google Scholar 

  30. Manna SS, Kiss LB, Kertész J (1990) J Stat Phys 61:923

    Google Scholar 

  31. Tadić B, Nowak U, Usadel KD, Ramaswamy R, Padlewski S (1992) Phys Rev A 45:8536

    Google Scholar 

  32. Tadic B, Ramaswamy R (1996) Phys Rev E 54:3157

    ADS  Google Scholar 

  33. Vespignani A, Zapperi S, Pietronero L (1995) Phys Rev E 51:1711

    ADS  Google Scholar 

  34. Lauritsen KB, Zapperi S, Stanley HE (1996) Phys Rev E 54:2483

    ADS  Google Scholar 

  35. Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45:167

    MathSciNet  ADS  MATH  Google Scholar 

  36. Yook SH, Jeong H, Barabasi AL, Tu Y (2001) Phys Rev Lett 86:5835

    ADS  Google Scholar 

  37. Barrat A, Barthelemy M, Pastor-Satorras R, Vespignani A (2004) Proc Natl Acad Sci USA 101:3747

    ADS  Google Scholar 

  38. Barrat A, Barthelemy M, Vespignani A (2004) Phys Rev Lett 92:228701

    ADS  Google Scholar 

  39. Pastor-Satorras R, Vespignani A (2001) Phys Rev Lett 86:3200

    ADS  Google Scholar 

  40. Dorogovtsev SN, Goltsev AV, Mendes JFF (2007) arXiv:cond-mat/0750.0110

    Google Scholar 

  41. Pastor-Satorras R, Vespignani A (2004) Evolution and Structure of the Internet: A Statistical Physics Approach. Cambridge University Press, Cambridge

    Google Scholar 

  42. Vazquez A, Balazs R, Andras L, Barabasi AL (2007) Phys Rev Lett 98:158702

    ADS  Google Scholar 

  43. Colizza V, Barrat A, Barthelemy M, Vespignani A (2006) PNAS 103:2015

    ADS  Google Scholar 

  44. Vazquez A (2006) Phys Rev Lett 96:038702

    ADS  Google Scholar 

  45. Kim BJ, Trusina A, Minnhagen P, Sneppen K (2005) Eur Phys J B43:369

    ADS  Google Scholar 

  46. Alava MJ, Dorogovtsev SN (2005) Phys Rev E 71:036107

    ADS  Google Scholar 

  47. Hui Z, Zi-You G, Gang Y, Wen-Xu W (2006) Chin Phys Lett 23:275

    ADS  Google Scholar 

  48. Ogata Y (1988) J Am Stat Assoc 83:9

    Google Scholar 

  49. Saichev A, Helmstetter A, Sornette D (2005) Pure Appl Geophys 162:1113

    ADS  Google Scholar 

  50. Lippidello E, Godano C, de Arcangelis L (2007) Phys Rev Lett 98:098501

    ADS  Google Scholar 

  51. Zapperi S, Castellano C, Colaiori F, Durin G (2005) Nat Phys 1:46

    Google Scholar 

Books and Reviews

  1. Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47

    Google Scholar 

  2. Asmussen S, Hering H (1883) Branching Processes. Birkhäuser, Boston

    Google Scholar 

  3. Athreya KB, Ney PE (2004) Branching Processes. Dover Publications, Inc., Mineola

    Google Scholar 

  4. Feller W (1971) An Introduction to Probability Theory and its Applications. vol 2, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  5. Haccou P, Jagers P, Vatutin VA (2005) Branching Processes: Variation, Growth, and Extinction of Populations. Cambridge University Press, Cambridge

    Google Scholar 

  6. Harris TE (1989) The Theory of Branching Processes. Dover, New York

    Google Scholar 

  7. Jensen HJ (1998) Self‐Organized Criticality. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  8. Kimmel M, Axelrod DE (2002) Branching Processes in Biology. Springer, New York

    MATH  Google Scholar 

  9. Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45:167

    MathSciNet  ADS  MATH  Google Scholar 

  10. Weiss GH (1994) Aspects and Applications of the Random Walk. North‐Holland, Amsterdam

    MATH  Google Scholar 

Download references

Acknowledgments

We are grateful to our colleague Stefano Zapperi with whom we have collaborated on topics related to networks, avalanches, and branchingprocesses. This work was supported by the Academy of Finland through the Center of Excellence program (M.J.A.) and EUMETSAT's GRAS Satellite ApplicationFacility (K.B.L.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Alava, M.J., Lauritsen, K. (2009). Branching Processes. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_43

Download citation

Publish with us

Policies and ethics