Skip to main content

Financial Forecasting, Sensitive Dependence

  • Reference work entry
  • 129 Accesses

Definition of the Subject

Empirical studies show that there are at least some components in future asset returns that are predictable using information that is currentlyavailable. When the linear time series models are employed in prediction, the accuracy of the forecast does not depend on the current return or theinitial condition. In contrast, with nonlinear time series models, properties of the forecast error depend on the initial value or the history. Theeffect of the difference in initial values in a stable nonlinear model, however, usually dies out quickly as the forecast horizon increases. For bothdeterministic and stochastic cases, the dynamic system is chaos if a small difference in the initial value is amplified at an exponential rate. Ina chaotic nonlinear model, the reliability of the forecast can decrease dramatically even for a moderate forecast horizon. Thus, the knowledgeof the sensitive dependence on initial conditions in a particular financial time series offers...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Global Lyapunov exponent:

A global stability measure of the nonlinear dynamic system. It is a long‐run average of the exponential growth rate of infinitesimally small initial deviation and is uniquely determined in the ergodic and stationary case. In this sense, this initial value sensitivity measure does not depend on the initial value. A system with positive Lyapunov exponents is considered chaotic for both deterministic and stochastic cases.

Local Lyapunov exponent:

A local stability measure based on a short‐run average of the exponential growth rate of infinitesimally small initial deviations. Unlike the global Lyapunov exponent, this initial value sensitivity measure depends both on the initial value and the horizon for the average calculation. A smaller local Lyapunov exponent implies a better performance at the point of forecast.

Noise amplification:

In a stochastic system with the additive noise, the effect of shocks can either grow, remain, or die out with the forecast horizon. If the system is nonlinear, this effect depends both on the initial value and size of the shock. For a chaotic system, the degree of noise amplification is so high that it makes the forecast almost identical to the iid forecast within the next few steps ahead.

Nonlinear impulse response function:

In a stochastic system with the additive noise, the effect of shocks on the variable in subsequent periods can be summarized in impulse response functions. If the system is linear, the impulse response does not depend on the initial value and its shape is proportional to the size of shocks. If the system is nonlinear, however, the impulse response depends on the initial value, or the history, and its shape is no longer proportional to the size of shocks.

Bibliography

  1. Abhyankar A, Copeland LS, Wong W (1995) Nonlinear dynamics in real-time equitymarket indices: evidence from the United Kingdom. Econ J 105:864–880

    Google Scholar 

  2. Abhyankar A, Copeland LS, Wong W (1997) Uncovering nonlinear structure inreal-time stock-market indexes: The S&P 500, the DAX, the Nikkei 225, and the FTSE-100. J Bus Econ Stat 15:1–14

    Google Scholar 

  3. Andersen TB, Bollerslev T, Diebold FX, Labys P (2003) Modeling and forecastingrealized volatility. Econometrica 71:579–625

    MathSciNet  MATH  Google Scholar 

  4. Bailey BA, Ellner S, Nychka DW (1997) Chaos with confidence: Asymptotics andapplications of local Lyapunov exponents. In: Cutler CD, Kaplan DT (eds) Fields Institute Communications, vol 11. American Mathematical Society,Providence, pp 115–133

    Google Scholar 

  5. Barnett WA, Gallant AR, Hinich MJ, Jungeilges J, Kaplan D, Jensen MJ (1995)Robustness of nonlinearity and chaos tests to measurement error, inference method, and sample size. J Econ Behav Organ27:301–320

    Google Scholar 

  6. Barnett WA, Serletis A (2000) Martingales, nonlinearity, and chaos. J Econ DynControl 24:703–724

    MATH  Google Scholar 

  7. Bask M, de Luna X (2002) Characterizing the degree of stability of non-lineardynamic models. Stud Nonlinear Dyn Econom 6:3

    Google Scholar 

  8. Bollerslev T (1986) Generalized autoregressive conditional heteroskedasticity.J Econ 31:307–327

    MathSciNet  MATH  Google Scholar 

  9. Brock WA, Dechert WD, Scheinkman JA, LeBaron B (1996) A test for independencebased on the correlation dimension. Econ Rev 15(3):197–235

    MathSciNet  MATH  Google Scholar 

  10. Brock WA, Hommes CH (1998) Heterogeneous beliefs and routes to chaos in a simple asset pricing model. J Econ Dyn Control 22:1235–1274

    MathSciNet  MATH  Google Scholar 

  11. Brock WA, Lakonishok J, LeBaron B (1992) Simple technical trading rules andthe stochastic properties of stock returns. J Financ 47:1731–1764

    Google Scholar 

  12. Campbell JY, Lo AW, MacKinlay AC (1997) The Econometrics of Financial Markets.Princeton University Press, Princeton

    MATH  Google Scholar 

  13. Campbell JY, Shiller R (1988) The dividend-price ratio and expectations offuture dividends and discount factors. Rev Financ Stud 1:195–228

    Google Scholar 

  14. Chan KS, Tong H (2001) Chaos: A Statistical Perspective. Springer, NewYork

    Google Scholar 

  15. Cheng B, Tong H (1992) On consistent nonparametric order determination andchaos. J Royal Stat Soc B 54:427–449

    MathSciNet  MATH  Google Scholar 

  16. Cheung YW, Chinn MD, Pascual AG (2005) Empirical exchange rate models of thenineties: Are any fit to survive? J Int Money Financ 24:1150–1175

    Google Scholar 

  17. Christoffersen PF, Diebold FX (2006) Financial asset returns,direction-of-change forecasting, and volatility dynamics. Management Sci 52:1273–1287

    Google Scholar 

  18. Dechert WD, Gençay R (1992) Lyapunov exponents as a nonparametricdiagnostic for stability analysis. J Appl Econom 7:S41–S60

    Google Scholar 

  19. Diebold FX, Nason JA (1990) Nonparametric exchange rate prediction? J IntEcon 28:315–332

    Google Scholar 

  20. Ding Z, Granger CWJ, Engle RF (1993) A long memory property of stock marketreturns and a new model. J Empir Financ 1:83–106

    Google Scholar 

  21. Eckmann JP, Kamphorst SO, Ruelle D, Ciliberto S (1986) Liapunov exponents fromtime series. Phys Rev A 34:4971–4979

    MathSciNet  ADS  Google Scholar 

  22. Eckmann JP, Ruelle D (1985) Ergodic theory of chaos and strange attractors.Rev Mod Phys 57:617–656

    MathSciNet  ADS  Google Scholar 

  23. Engle RF (1982) Autoregressive conditional heteroskedasticity with estimatesof the variance of UK inflation. Econometrica 50:987–1008

    MathSciNet  MATH  Google Scholar 

  24. Fama E (1970) Efficient capital markets: Review of theory and empirical work.J Financ 25:383–417

    Google Scholar 

  25. Fama E, French K (1988) Permanent and temporary components of stock prices. J Political Econ 96:246–273

    Google Scholar 

  26. Fama E, French K (1988) Dividend yields and expected stock returns. J FinancEcon 22:3–5

    Google Scholar 

  27. Fan J, Yao Q (2003) Nonlinear Time Series: Nonparametric and ParametricMethods. Springer, New York

    MATH  Google Scholar 

  28. Fan J, Yao Q, Tong H (1996) Estimation of conditional densities andsensitivity measures in nonlinear dynamical systems. Biometrika 83:189–206

    MathSciNet  MATH  Google Scholar 

  29. Fernándes-Rodríguez F, Sosvilla-Rivero S, Andrada-Félix J (2005) Testingchaotic dynamics via Lyapunov exponents. J Appl Econom 20:911–930

    Google Scholar 

  30. Frank M, Stengos T (1989) Measuring the strangeness of gold and silver ratesof return. Rev Econ Stud 56:553–567

    Google Scholar 

  31. Gallant AR, Rossi PE, Tauchen G (1993) Nonlinear dynamic structures.Econometrica 61:871–907

    MathSciNet  MATH  Google Scholar 

  32. Gençay R (1996) A statistical framework for testing chaotic dynamics viaLyapunov exponents. Physica D 89:261–266

    Google Scholar 

  33. Gençay R (1998) The predictability of security returns with simpletechnical trading rules. J Empir Financ 5:347–359

    Google Scholar 

  34. Gençay R (1999) Linear, non-linear and essential foreign exchange rateprediction with simple technical trading rules. J Int Econ 47:91–107

    Google Scholar 

  35. Giannerini S, Rosa R (2001) New resampling method to assess the accuracy ofthe maximal Lyapunov exponent estimation. Physica D 155:101–111

    ADS  MATH  Google Scholar 

  36. Grassberger P, Procaccia I (1983) Estimation of the Kolmogorov entropy from a chaotic signal. Phys Rev A 28:2591–2593

    ADS  Google Scholar 

  37. Hall P, Wolff RCL (1995) Properties of invariant distributions and Lyapunovexponents for chaotic logistic maps. J Royal Stat Soc B 57:439–452

    MathSciNet  MATH  Google Scholar 

  38. Hommes CH, Manzan S (2006) Comments on Testing for nonlinear structure andchaos in economic time series. J Macroecon 28:169–174

    Google Scholar 

  39. Hong Y, Lee TH (2003) Inference on predictability of foreign exchange ratesvia generalized spectrum and nonlinear time series models. Rev Econ Stat 85:1048–1062

    Google Scholar 

  40. Hsieh DA (1989) Testing for nonlinear dependence in daily foreign exchangerates. J Bus 62:339–368

    Google Scholar 

  41. Hsieh DA (1991) Chaos and nonlinear dynamics: application to financialmarkets. J Financ 46:1839–1877

    Google Scholar 

  42. Koop G, Pesaran MH, Potter SM (1996) Impulse response analysis in nonlinearmultivariate models. J Econom 74:119–147

    MathSciNet  MATH  Google Scholar 

  43. Kuan CM, Liu T (1995) Forecasting exchange rates using feedforward andrecurrent neural networks. J Appl Econom 10:347–364

    Google Scholar 

  44. LeBaron B (1992) Some relation between the volatility and serial correlationsin stock market returns. J Bus 65:199–219

    Google Scholar 

  45. Lin WL (1997) Impulse response function for conditional volatility in GARCHmodels. J Bus Econ Stat 15:15–25

    ADS  Google Scholar 

  46. Linton OB (2008) Semiparametric and nonparametric ARCH modelling. In: AndersonTG, Davis RA, Kreiss JP, Mikosch T (ed) Handbook of Financial Time Series. Springer, Berlin

    Google Scholar 

  47. Lo AW, MacKinlay AC (1988) Stock market prices do not follow random walks:evidence from a simple specification test. Rev Financ Stud 1:41–66

    Google Scholar 

  48. Lu ZQ, Smith RL (1997) Estimating local Lyapunov exponents. In: Cutler CD,Kaplan DT (eds) Fields Institute Communications, vol 11. American Mathematical Society, Providence,pp 135–151

    Google Scholar 

  49. Maasoumi E, Racine J (2002) Entropy and predictability of stock marketreturns. J Econom 107:291–312

    MathSciNet  MATH  Google Scholar 

  50. Mayfield ES, Mizrach B (1992) On determining the dimension of real time stockprice data. J Bus Econ Stat 10:367–374

    Google Scholar 

  51. McCaffrey DF, Ellner S, Gallant AR, Nychka DW (1992) Estimating the Lyapunovexponent of a chaotic system with nonparametric regression. J Am Stat Assoc 87:682–695

    MathSciNet  MATH  Google Scholar 

  52. Meese R, Rogoff K (1983) Exchange rate models of the seventies. Do they fitout of sample? J Int Econ 14:3–24

    Google Scholar 

  53. Nelson DB (1990) Conditional heteroskedasticity in asset returns: A newapproach. Econometrica 59:347–370

    Google Scholar 

  54. Nychka D, Ellner S, Gallant AR, McCaffrey D (1992) Finding chaos in noisysystem. J Royal Stat Soc B 54:399–426

    MathSciNet  Google Scholar 

  55. Pesaran MH, Timmermann A (1995) Predictability of stock returns: robustnessand economic significance. J Financ 50:1201–1228

    Google Scholar 

  56. Pesin JB (1977) Characteristic Liapunov exponents and smooth ergodic theory.Russ Math Surv 32:55–114

    MathSciNet  Google Scholar 

  57. Poterba JM, Summers LH (1988) Mean reversion in stock prices: evidence andimplications. J Financ Econ 22:27–59

    Google Scholar 

  58. Potter SM (2000) Nonlinear impulse response functions. J Econ Dyn Control24:1425–1446

    MATH  Google Scholar 

  59. Qi M (1999) Nonlinear predictability of stock returns using financial andeconomic variables. J Bus Econ Stat 17:419–429

    Google Scholar 

  60. Qi M, Maddala GS (1999) Economic factors and the stock market: a newperspective. J Forecast 18:151–166

    Google Scholar 

  61. Racine J (2001) On the nonlinear predictability of stock returns usingfinancial and economic variables. J Bus Econ Stat 19:380–382

    MathSciNet  Google Scholar 

  62. Richardson M, Stock JH (1989) Drawing inferences from statistics based onmultiyear asset returns. J Financ Econ 25:323–348

    Google Scholar 

  63. Rosenstein MT, Collins JJ, De Luca CJ (1993) A practical method forcalculating largest Lyapunov exponents from small data sets. Physica D 65:117–134

    MathSciNet  ADS  MATH  Google Scholar 

  64. Scheinkman JA, LeBaron B (1989) Nonlinear dynamics and stock returns. J Bus62:311–337

    Google Scholar 

  65. Schittenkopf C, Dorffner G, Dockner EJ (2000) On nonlinear, stochasticdynamics in economic and financial time series. Stud Nonlinear Dyn Econom 4:101–121

    Google Scholar 

  66. Shintani M (2006) A nonparametric measure of convergence towards purchasingpower parity. J Appl Econom 21:589–604

    MathSciNet  Google Scholar 

  67. Shintani M, Linton O (2003) Is there chaos in the world economy? A nonparametric test using consistent standard errors. Int Econ Rev 44:331–358

    MathSciNet  Google Scholar 

  68. Shintani M, Linton O (2004) Nonparametric neural network estimation ofLyapunov exponents and a direct test for chaos. J Econom 120:1–33

    MathSciNet  Google Scholar 

  69. Taylor SJ (1986) Modelling Financial Time Series. Wiley, New York

    Google Scholar 

  70. Tjostheim D, Auestad BH (1994) Nonparametric identification of nonlinear timeseries: Selecting significant lags. J Am Stat Assoc 89:1410–1419

    MathSciNet  Google Scholar 

  71. Tschernig R, Yang L (2000) Nonparametric lag selection for time series. J Time Ser Analysis 21:457–487

    MathSciNet  MATH  Google Scholar 

  72. Tschernig R, Yang L (2000) Nonparametric estimation of generalized impulseresponse functions. Michigan State University, unpublished

    Google Scholar 

  73. Valkanov R (2003) Long-horizon regressions: theoretical results andapplications. J Financ Econom 68:201–232

    Google Scholar 

  74. Whang YJ, Linton O (1999) The asymptotic distribution of nonparametricestimates of the Lyapunov exponent for stochastic time series. J Econom 91:1–42

    MathSciNet  MATH  Google Scholar 

  75. White H (1988) Economic prediction using neural networks: the case of IBMstock returns. Proceedings of the IEEE International Conference on Neural Networks 2. The Institute of Electrical and Electronics Engineers, San Diego,pp 451–458

    Google Scholar 

  76. White H, Racine J (2001) Statistical inference, the bootstrap, andneural-network modeling with application to foreign exchange rates. IEEE Trans Neural Netw 12:657–673

    Google Scholar 

  77. Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining Lyapunov exponentsfrom a time series. Physica D 16:285–317

    MathSciNet  ADS  MATH  Google Scholar 

  78. Wolff RCL (1992) Local Lyapunov exponent: Looking closely at chaos. J RoyalStat Soc B 54:353–371

    MathSciNet  Google Scholar 

  79. Wolff R, Yao Q, Tong H (2004) Statistical tests for Lyapunov exponents ofdeterministic systems. Stud Nonlinear Dyn Econom 8:10

    Google Scholar 

  80. Yao Q, Tong H (1994) Quantifying the influence of initial values on non-linearprediction. J Royal Stat Soc Ser B 56:701–725

    MathSciNet  MATH  Google Scholar 

  81. Yao Q, Tong H (1994) On prediction and chaos in stochastic systems. PhilosTrans Royal Soc Lond A 348:357–369

    ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Shintani, M. (2009). Financial Forecasting, Sensitive Dependence. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_209

Download citation

Publish with us

Policies and ethics