Skip to main content

Electromechanical Behavior in Biological Systems at the Nanoscale

  • Chapter
Book cover Scanning Probe Microscopy

Abstract

Hierarchical structure of connective and calcified tissues from the macro- to nanoscale level determines the mechanical and biological functionality of biological materials and has been the focus of numerous recent studies. Further progress in this field requires development of microscopic techniques capable of probing materials properties, including local composition, crystallographic orientation, and mechanical properties on the nanometer-length scale. Here, we describe a piezoresponse force microscopy (PFM) approach to high-resolution imaging of biological systems, based on detection of the local piezoelectric response. Samples include human tooth, femoral cartilage, deer antler, and butterfly wing scales. PFM allows differentiation between organic and mineral components and provides additional important information on materials microstructure. We also demonstrate the PFM capability of studying the internal structure and orientation of protein microfibrils with a spatial resolution of several nanometers. Future potential of the PFM approach for biological imaging is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. A. Bazhenov, Piezoelectric Properties Of Wood (Consultants Bureau, New York, 1961).

    Google Scholar 

  2. E. Fukada and I. Yasuda, J. Phys. Soc. Jpn. 12, 1158 (1957).

    Article  Google Scholar 

  3. M. A. El Messiery, IEE Proc. 128 A, 336 (1980).

    Google Scholar 

  4. E. Fukada, J. Phys. Jpn. 10, 149 (1955).

    Article  Google Scholar 

  5. E. Fukada, Biorheology 5, 199 (1968).

    CAS  Google Scholar 

  6. E. Fukada, Biorheology 32, 593 (1995).

    Article  CAS  Google Scholar 

  7. M. H. Shamos, and L. S. Lavine, J. Clin. Orthop. 35, 177 (1966).

    Google Scholar 

  8. W. Williams, and L. Breger, J. Biomech. 8, 407 (1975).

    Article  CAS  Google Scholar 

  9. A. J. Bur, J. Biomech. 9, 495 (1977).

    Article  Google Scholar 

  10. W. G. Cady, Piezoelectricity: An Introduction to the Theory and Applications of Electromechanical Phenomena in Crystals (New York: Dover Publications, 1964).

    Google Scholar 

  11. A. V. Shubnikov, Piezoelectric textures, USSR Academy of Sciences, Moscow, 1946.

    Google Scholar 

  12. E. Fukada, Rep. Progress in Polymer Phys. Jpn. 3, 163 (1960).

    Google Scholar 

  13. E. Fukada, J. Phys. Soc. Jpn. 12, 1301 (1956).

    Google Scholar 

  14. M. Yamauchi, Advances in Tissue Banking 6, 445 (2002).

    Article  CAS  Google Scholar 

  15. G. N. Ramachandran and G. Kartha, Nature 174, 269 (1954).

    Article  CAS  Google Scholar 

  16. A. A. Marino, and R. O. Becker, Calc. Tissue Res. 8, 177 (1971).

    Article  CAS  Google Scholar 

  17. A. A. Gundjian, and H. L. Chen, IEEE Transactions on Biomedical Engineering 21(3), 177 (1974).

    Article  CAS  Google Scholar 

  18. S. B. Lang, Nature 212, 704 (1966).

    Article  Google Scholar 

  19. A. R. Liboff, and M. Frust, Ann. NY Acad. Sci. 238, 26 (1974).

    Article  Google Scholar 

  20. S. Mascarenhas, in Electric Charge Storage, ed. by M. Perlman (The Electroemechanical Society Inc., 1972), pp. 650–656.

    Google Scholar 

  21. H. Athenstadt, Naturwiss 48, 465 (1961).

    Article  Google Scholar 

  22. J. C. Anderson, and C. Eriksson, Nature 227, 491 (1970).

    Article  CAS  Google Scholar 

  23. T. G. Netto, and R. L. Zimmerman, Biophysical J. 15, 573 (1975)

    CAS  Google Scholar 

  24. C. A. L. Bassett, Calc. Tiss. Res. 1, 252 (1968).

    Article  CAS  Google Scholar 

  25. A. Gjelsvik, J. Biomech. 6, 69 (1973).

    Article  CAS  Google Scholar 

  26. C. T. Brighton, Z. B. Friedenberg, E. I. Mitchell, and R. E. Booth, Clin. Orthop. Relat. Res. 124, 106 (1977).

    Google Scholar 

  27. S. Weiner and H. D. Wagner, Annu. Rev. Mater. Res. 28, 271 (1998).

    Article  CAS  Google Scholar 

  28. H. Athenstadt, Nature 238, 830 (1970).

    Article  Google Scholar 

  29. W. S. Williams, M. Johnson, and D. Gross, in Electrical Properties of Bone and Cartilage, ed. by Brighton, Black and Pollack (Grune and Stratton, 1979).

    Google Scholar 

  30. E. Korostoff, J. Biomech. 10, 41 (1977).

    Article  CAS  Google Scholar 

  31. A. Gruverman, in Encyclopedia of Nanoscience and Nanotechnology, ed. by H. S. Nalwa, Vol. 3, pp. 359–375 (American Scientific Publishers, Los Angeles, 2004).

    Google Scholar 

  32. A. Gruverman, O. Auciello, and H. Tokumoto, Annu. Rev. Mat. Sci. 28, 101 (1998).

    Article  CAS  Google Scholar 

  33. Nanoscale Characterization of Ferroelectric Materials, ed. by M. Alexe and A. Gruverman (Springer-Verlag, Berlin 2004).

    Google Scholar 

  34. S. V. Kalinin, E. Karapetian, and M. Kachanov, Phys. Rev. B 70, 184101 (2004).

    Google Scholar 

  35. L. M. Eng, H.-J. Guntherodt, G. A. Schneider, U. Kopke and J. M. Saldana, Appl. Phys. Lett. 74, 233 (1999).

    Article  CAS  Google Scholar 

  36. S. V. Kalinin, B. J. Rodriguez, S. Jesse, T. Thundat, and A. Gruverman, Appl. Phys. Lett. 87, 053901 (2005).

    Article  CAS  Google Scholar 

  37. S. V. Kalinin, B. J. Rodriguez, J. Shin, S. Jesse, V. Grichko, T. Thundat, A. P. Baddorf, and A. Gruverman, Ultramicroscopy 106, 334 (2006).

    Article  CAS  Google Scholar 

  38. C. Halperin, S. Mutchnik, A. Agronin, M. Molotskii, P. Urenski, M. Salai, and G. Rosenman, Nano Letters 4, 1253 (2004).

    Article  CAS  Google Scholar 

  39. U. Rabe, M. Kopycinska, S. Hiserkorn, J. Munoz-Saldana, G.A. Schneider, and W. Arnold, J. Phys. D 35, 2621 (2002).

    Google Scholar 

  40. M. Goldberg, M. Takagi, Histochem. J. 25, 781 (1993).

    CAS  Google Scholar 

  41. A. Linde, S. P. Robins, Coll. Relat. Res. 8, 443 (1988).

    CAS  Google Scholar 

  42. B. J. Rodriguez, S. V. Kalinin, J. Shin, S. Jesse, V. Grichko, T. Thundat, A. P. Baddorf, and A. Gruverman, J. Struct. Biol. 153, 151 (2006).

    Article  CAS  Google Scholar 

  43. A. A. Marino, B. D. Gros, Archs. Oral Biol. 34, 507 (1989).

    Article  CAS  Google Scholar 

  44. S. Habelitz, M. Balooch, S. J. Marshall, G Balooch, G. W. Marshall, J. Struct. Biol. 138, 227 (2002).

    Article  CAS  Google Scholar 

  45. J. H. Kinney, M. Balooch, G. W. Marshall, S. J. Marshall, Arch. Oral Biol. 44, 813 (1999).

    Article  CAS  Google Scholar 

  46. H. Sano, B. Ciucchi, W. G. Matthews, D. H. Pashley, J. Dent. Res. 73, 1205 (1994).

    CAS  Google Scholar 

  47. M. A. Elmessiery, G.W. Hastings, and S. Rakowsky, J. Biomed. Eng. 1, 63 (1979).

    Article  CAS  Google Scholar 

  48. S. V. Kalinin, B. J. Rodriguez, S. Jesse, J. Shin, A. P. Baddorf, P. Gupta, H. Jain, D. B. Williams, and A. Gruverman, Microscopy and Microanalysis 12, 206 (2006).

    Article  CAS  Google Scholar 

  49. J. W. Smith, Nature 219, 157 (1968).

    Article  CAS  Google Scholar 

  50. R. E. Newnham, Properties of Materials: Anisotropy, Symmetry, Structure, Oxford University Press, 2005.

    Google Scholar 

  51. R. J. Wootton, Scient. Am. 262, 114 (1990).

    Article  Google Scholar 

  52. C. P. Ellington, J. Exp. Biology 202, 3439 (1999).

    CAS  Google Scholar 

  53. R. J. Wootton, Proc. R. Soc. Lond. B 262, 181 (1995).

    Article  Google Scholar 

  54. R. Dudley, J. Exp. Biol. 150, 37 (1990).

    Google Scholar 

  55. S. J. Steppan, J. Res. Lepidoptera 35, 61 (2000).

    Google Scholar 

  56. H. Tada, S. E. Mann, L. N. Miaoulis, and P. Y. Wong, Applied Optics 37, 579 (1998).

    Article  Google Scholar 

  57. P. Y. Wong, T. H. Gupta, M. C. B. Robins, and T. L. Levendusky, Optics Letters 28, 19 (2003).

    Google Scholar 

  58. C. C. Silva, C. G. A. Lima, A. G. Pinheiro, J. C. Goes, S. D. Figueiro, and A. S. B. Sombra, Phys. Chem. Chem. Phys. 3, 4154 (2001).

    Article  CAS  Google Scholar 

  59. H. Maeda, Biophysical J. 56, 861 (1989).

    Article  CAS  Google Scholar 

  60. E. Fukada, R. L. Zimmerman, and S. Mascarenhas, Biochem. Biophys. Res. Comm. 62, 415 (1975).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gruverman, A., Rodriguez, B.J., Kalinin, S.V. (2007). Electromechanical Behavior in Biological Systems at the Nanoscale. In: Kalinin, S., Gruverman, A. (eds) Scanning Probe Microscopy. Springer, New York, NY. https://doi.org/10.1007/978-0-387-28668-6_23

Download citation

Publish with us

Policies and ethics