Skip to main content

Metastasis of Hormone Receptor Positive Breast Cancer

  • Chapter
  • First Online:
  • 950 Accesses

Part of the book series: Cancer Treatment and Research ((CTAR,volume 147))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lee K, Jessop H, Suswillo R, et al. Endocrinology: bone adaptation requires estrogen receptor-alpha. Nature 2003;424:389.

    PubMed  CAS  Google Scholar 

  2. Steeg PS. Metastasis suppressors alter the signal transduction of cancer cells. Nature Rev Cancer. 2003;3:55–63.

    CAS  Google Scholar 

  3. Welch DR, Tomasovic SP. Implications of tumor progression on clinical oncology. Clin Exptl Metastasis. 1985;3:151–188.

    CAS  Google Scholar 

  4. Nowell P. The clonal evolution of tumor cell populations. Science 1976;194:23–28.

    PubMed  CAS  Google Scholar 

  5. Jain RK, Munn LL, Fukumura D. Dissecting tumor pathophysiology using intravital microscopy. Nature Rev Cancer. 2002;2:266–276.

    CAS  Google Scholar 

  6. Chambers AF, Groom AC, MacDonald IC. Metastasis: dissemination and growth of cancer cells in metastatic sites. Nature Rev Cancer. 2002;2:563–572.

    CAS  Google Scholar 

  7. Chambers AF, MacDonald IC, Schmidt EE, et al. Steps in tumor metastasis: new concepts from intravital videomicroscopy. Cancer Metastasis Rev. 1995;14:279–301.

    PubMed  CAS  Google Scholar 

  8. Weiss L. Concepts of metastasis. Cancer Metastasis Rev. 2000;19:219–234.

    Google Scholar 

  9. Weiss L. Metastatic inefficiency. Adv Cancer Res. 1990;54:159–211.

    PubMed  CAS  Google Scholar 

  10. Fidler IJ. Selection of successive tumor lines for metastasis. Nature New Biol. 1973;242:148–149.

    PubMed  CAS  Google Scholar 

  11. Chambers AF, Naumov GN, Vantyghem SA, et al. Molecular biology of breast cancer metastasis: clinical implications of experimental studies on metastatic inefficiency. Breast Cancer Res. 2000;2:400–407.

    PubMed  CAS  Google Scholar 

  12. Korach KS. Insights from the study of animals lacking functional estrogen receptor. Science 1994;266:1524–1527.

    PubMed  CAS  Google Scholar 

  13. Gustafsson JA. Estrogen receptor β – a new dimension in estrogen mechanism of action. J Endocrinol. 1999;163:379–383.

    PubMed  CAS  Google Scholar 

  14. Dupont S, Krust A, Gansmuller A, et al. Effect of single and compound knockouts of estrogen receptors α (ERα) and β (ERβ) on mouse reproductive phenotypes. Development 2000;127:4277–4291.

    PubMed  CAS  Google Scholar 

  15. Speirs V, Malone C, Walton DS, et al. Increased expression of estrogen receptor b mRNA in Tamoxifen-resistant breast cancer patients. Cancer Res. 1999;59:5421–5424.

    PubMed  CAS  Google Scholar 

  16. Simoncini T, Hafezi-Moghadam A, Brazil DP, et al. Interaction of estrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature 2000;407:538–541.

    PubMed  CAS  Google Scholar 

  17. Kousteni S, Bellido T, Plotkin LI, et al. Nongenotropic, sex-nonspecific signaling through the estrogen and androgen receptors: dissociation from transcriptional activity. Cell 2001;104:719–730.

    PubMed  CAS  Google Scholar 

  18. Platet N, Cathiard AM, Gleizes M, et al. Estrogens and their receptors in breast cancer progression: a dual role in cancer proliferation and invasion. Critical Rev Oncol. 2004;51:55–67.

    Google Scholar 

  19. Platet N, Prevostel C, Derocq D, et al. Breast cancer cell invasiveness: correlation with protein kinase C activity and differential regulation by phorbol ester in estrogen receptor-positive and -negative cells. Int J Cancer. 1998;75:750–756.

    PubMed  CAS  Google Scholar 

  20. Coleman RE. Skeletal complications of malignancy. Cancer 1997;80:1588–1594.

    PubMed  CAS  Google Scholar 

  21. Lipton A. Bisphosphonates and metastatic breast carcinoma. Cancer 2003;97:848–853.

    PubMed  Google Scholar 

  22. Price JE, Polyzos A, Zhang RD, et al. Tumorigenicity and metastasis of human breast carcinoma cell lines in nude mice. Cancer Res. 1990;50:717–721.

    PubMed  CAS  Google Scholar 

  23. Klijn JGM, Berns PMJJ, Schmitz PIM, et al. The clinical significance of epidermal growth factor receptor (EGF-R) in human breast cancer: a review on 5232 patients. Endocr Rev. 1992;13:3–17.

    PubMed  CAS  Google Scholar 

  24. Nicholson RI, MeClelland RA, Gee JMW, et al. Epidermal growth factor receptor expression in breast cancer: association with response to endocrine therapy. Breast Cancer Res Treat. 1994;29:117–125.

    PubMed  CAS  Google Scholar 

  25. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2:127–137.

    PubMed  CAS  Google Scholar 

  26. Bates SE, Davidson NE, Valverius EM, et al. Expression of transforming growth factor-α and its messenger RNA in human breast cancer: its regulation by estrogen and its possible functional significance. Mol Endocrinol. 1988;2:543–555.

    PubMed  CAS  Google Scholar 

  27. Martinez-Lacaci I, Secada M, Plowman G, et al. Estrogen and phorbol esters regulate amphiregulin expression by two separate mechanisms in human breast cancer cell lines. Endocrinology 1995;136:3983–3992.

    PubMed  CAS  Google Scholar 

  28. Lichtner RB. Estrogen/EGF receptor interactions in breast cancer: rationale for new therapeutic combination strategies. Biomed Pharmacother. 2003;57:447–451.

    PubMed  CAS  Google Scholar 

  29. Arozullah AM, Calhoun EA, Wolf M, et al. The financial burden of cancer: estimates from a study of insured women with breast cancer. J Support Oncol. 2004;2:271–278.

    PubMed  Google Scholar 

  30. Guarneri V, Conte PF. The curability of breast cancer and the treatment of advanced disease. Eur J Nucl Med Mol Imaging. 2004;31:S149–S161.

    PubMed  Google Scholar 

  31. Gralow JR. Optimizing the treatment of metastatic breast cancer. Breast Cancer Res Treat. 2005;89:S9–S15.

    PubMed  CAS  Google Scholar 

  32. McKeage K, Curran MP, Plosker GL. Fulvestrant: a review of its use in hormone receptor-positive metastatic disease in postmenopausal women with disease progression following antiestrogen therapy. Drugs 2004;64:633–648.

    PubMed  CAS  Google Scholar 

  33. Howell A, Robertson JFR, Vergote I. A review of the efficacy of anastrozole in postmenopausal women with advanced breast cancer with visceral metastases. Breast Cancer Res Treat. 2003;82:215–222.

    PubMed  CAS  Google Scholar 

  34. Carlson RW, Henderson IC. Sequential hormonal therapy for metastatic breast cancer after adjuvant tamoxifen or anastrozole. Breast Cancer Res Treat. 2003;80:S19–S26.

    PubMed  CAS  Google Scholar 

  35. Buzdar AU. Advances in endocrine treatments for postmenopausal women with metastatic and early breast cancer. Oncologist 2003;8:335–341.

    PubMed  CAS  Google Scholar 

  36. Bernards R, Weinberg RA. Metastasis genes: a progression puzzle. Nature 2002;418:823.

    PubMed  CAS  Google Scholar 

  37. Hahn WC, Weinberg RA. Rules for making human tumor cells. N Engl J Med. 2002;347:1593–1603.

    PubMed  CAS  Google Scholar 

  38. Coussens LM, Werb Z. Inflammation and cancer. Nature 2002;420:860–867.

    PubMed  CAS  Google Scholar 

  39. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nature Rev Cancer. 2002;2:161–174.

    CAS  Google Scholar 

  40. Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature 2000;406:747–752.

    PubMed  CAS  Google Scholar 

  41. Weigelt B, Hu Z, He X, et al. Molecular portraits and 70-gene prognosis signature are preserved throughout the metastatic process of breast cancer. Cancer Res. 2005;65:9155–9158.

    PubMed  CAS  Google Scholar 

  42. Buyse M, Loi S, van’t Veer L, et al. Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. JNCI 2006;98:1183–1192.

    PubMed  CAS  Google Scholar 

  43. van de Vijver MJ, He YD, van’t Veer L, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347:1999–2009.

    PubMed  Google Scholar 

  44. Glas AM, Floore A, Delahaye LJMJ, et al. Converting a breast cancer microarray signature a into high-throughput diagnostic test. BMC Genomics 2006;7:278–287.

    PubMed  Google Scholar 

  45. Liu R, Wang X, Chen GY, et al. The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med. 2007;356:217–226.

    PubMed  CAS  Google Scholar 

  46. Fan C, Oh D, Wessels L, et al. Concordance among gene-expression based predictors for breast cancer. N Engl J Med. 2006;355:560–569.

    PubMed  CAS  Google Scholar 

  47. Yang H, Crawford N, Lukes L, et al. Metastasis predictive signature profiles pre-exist in normal tissues. Clin Exp Metastasis. 2005;22:593–603.

    PubMed  CAS  Google Scholar 

  48. Ramaswamy S, Ross KN, Lander ES, et al. A molecular signature of metastasis in primary solid tumors. Nat Genet. 2003;33:49–54.

    PubMed  CAS  Google Scholar 

  49. Minn AJ, Gupta GP, Siegel PM, et al. Genes that mediate breast cancer metastasis to lung. Nature 2005;436:518–524.

    PubMed  CAS  Google Scholar 

  50. Kang Y, Siegel PM, Shu W, et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 2003;3:537–549.

    PubMed  CAS  Google Scholar 

  51. Minn AJ, Kang Y, Serganova I, et al. Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest. 2005;115:44–55.

    PubMed  CAS  Google Scholar 

  52. O’Donnell RK, Kupferman M, Wei SJ, et al. Gene expression signature predicts lymphatic metastasis in squamous cell carcinoma of the oral cavity. Oncogene 2005;24:1244–1251.

    PubMed  Google Scholar 

  53. Yin JJ, Mohammad KS, Kakonen SM, et al. A causal role for endothelin-1 in the pathogenesis of osteoblastic bone metastases. Proc Natl Acad Sci USA 2003;100:10954–10959.

    Google Scholar 

  54. Debies MT, Welch DR. Genetic basis of human breast cancer metastasis. J Mam Biol Neo. 2001;6:441–451.

    CAS  Google Scholar 

  55. Senger DR, Perruzzi CA. Cell migration promoted by a potent GRGDS-containing thrombin-cleavage fragment of osteopontin. Biochim Biophys Acta. 1996;1314:13–24.

    PubMed  CAS  Google Scholar 

  56. Wu Y, Denhardt DT, Rittling SR, Osteopontin is required for full expression of the transformed phenotype by the Ras oncogene. Br J Cancer. 2000;83:156–163.

    PubMed  CAS  Google Scholar 

  57. Behrend EI, Craig AM, Wilson SM, et al. Expression of antisense osteopontin RNA in metastatic mouse fibroblasts is associated with reduced malignancy. Ann NY Acad Sci. 1995;760:299–301.

    PubMed  CAS  Google Scholar 

  58. Denhardt DT, Guo X. Osteopontin: a protein with diverse functions. FASEB J. 1993;1475–1482.

    Google Scholar 

  59. Standal T, Borset M, Sundan A. Role of osteopontin in adhesion, migration, cell survival and bone remodeling. Exp Oncol. 2004;26:179–184.

    PubMed  CAS  Google Scholar 

  60. Wai PY, Kuo PCJ. The role of osteopontin in tumor metastasis. Surg Res. 2004;121:228–241.

    CAS  Google Scholar 

  61. Philip S, Kundu GC. Osteopontin induces NF-kappa B mediated promatrix metalloproteinase-2 activation through IKK/IκBα signaling pathways and curcumin (diferulolylmethane) down regulates these pathways. J Biol Chem. 2003;278:14487–14497.

    PubMed  CAS  Google Scholar 

  62. Das R, Mahabeleshwar GH, Kundu GC. Osteopontin induces AP-1-mediated secretion of urokinase type plasminogen activator through c-Src dependent EGF receptor transactivation in breast cancer cells. J Biol Chem. 2004;279:11051–11064.

    PubMed  CAS  Google Scholar 

  63. Tuck AB, Arsenault DM, O’Malley FP, et al. Osteopontin induces invasiveness and plasminogen activator expression of human mammary epithelial cells. Oncogene 1999;18:4237–4246.

    PubMed  CAS  Google Scholar 

  64. Liaw L, Lindner V, Schwartz SM, et al. Osteopontin and beta 3 integrin are coordinately expressed in regenerating endothelium in vivo and stimulate Arg-Gly-Asp-dependent endothelial migration in vitro. Circ Res. 1995;77:665–672.

    PubMed  CAS  Google Scholar 

  65. Ellison JA, Velier JJ, Spera P, et al. Osteopontin and its integrin receptor alpha(v)beta3 are upregulated during formation of the glial scar after focal stroke. Stroke 1998;29:1698–1706.

    PubMed  CAS  Google Scholar 

  66. Das R, Mahabeleshwar GH, Kundu GC. Osteopontin stimulates cell motility and nuclear factor kappy B-mediated secretion of urokinase plasminogen activator through phosphatidylinositol 3-kinase/Akt signaling pathways in breast cancer cells. J Biol Chem 2003;278:28593–28606.

    Google Scholar 

  67. Das R, Philip S, Ganapati H, et al. Osteopontin: It’s role in regulation of cell motility and nuclear factor kB-mediated urokinase type plasminogen activator expression. IUBMB Life 2005;57:441–447.

    PubMed  CAS  Google Scholar 

  68. MacDougall JR, Matrisian LM. Contributions of tumor and stromal matrix metalloproteinases to tumor progression, invasion and metastasis. Cancer Metastasis Rev. 1995;14:351–362.

    PubMed  CAS  Google Scholar 

  69. Scatena M, Almeida M, Chaisson ML, et al. NF-kappa B mediates αvβ3 integrin-induced endothelial cell survival. J Cell Biol. 1998;141:1083–1093.

    PubMed  CAS  Google Scholar 

  70. Furger KA, Menon RK, Tuck AB, et al. The functional and clinical roles of osteopontin in cancer and metastasis. Curr Mol Med. 2001;1:621–632.

    PubMed  CAS  Google Scholar 

  71. Tuck AB, O’Malley FP, Singhal H, et al. Osteopontin expression in a group of lymph node negative breast cancer patients. Int J Cancer. 1998;79:502–508.

    PubMed  CAS  Google Scholar 

  72. Furlong EE, Andersen EC, Null B, et al. Patterns of gene expression during drosophila mesoderm development. Science 2001;293:1629–1633.

    PubMed  CAS  Google Scholar 

  73. Fidler IJ. Critical determinants of metastasis. Semin Cancer Biol. 2002;12:89–96.

    PubMed  Google Scholar 

  74. Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2002;2:563–572.

    PubMed  CAS  Google Scholar 

  75. Huang S, Pettaway CA, Uehara H, et al. Blockade of NF-κB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene 2001;20:4188–4197.

    PubMed  CAS  Google Scholar 

  76. Huber MA, Azoitei N, Baumann B, et al. NF-κB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest. 2004;114:568–581.

    Google Scholar 

  77. Ghosh S, May MJ, Kopp EB. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Ann Rev Immunol. 1998;16:225–260.

    CAS  Google Scholar 

  78. Karin M, Ben-Neriah Y. Phsophorylation meets ubiquitination: the control of NF-κB activity. Ann Rev Immunol. 2000;18:621–663.

    CAS  Google Scholar 

  79. Park BK, Zhang H, Zeng Q, et al. NF-κB in breast cancer cells promotes osteolytic bone metastasis by inducing osteoclastogenesis via GM-CSF. Nat Med. 2007;13:62–69.

    PubMed  CAS  Google Scholar 

  80. Yang J, Mani SA, Weinberg RA. Exploring a new twist on tumor metastasis. Cancer Res. 2006;66:4549–4552.

    PubMed  CAS  Google Scholar 

  81. Yang J, Mani SA, Donaher JL, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 2004;117:927–939.

    PubMed  CAS  Google Scholar 

  82. Maestro R, Dei Tos AP, Hamamori Y, et al. Twist is a potential oncogene that inhibits apoptosis. Genes Dev. 1999;13:2207–2217.

    PubMed  CAS  Google Scholar 

  83. Valsesia-Wittmann S, Magdeleine M, Dupasquier S, et al. Oncogenic cooperation between H-Twist and N-Myc overrides failsafe programs in cancer cells. Cancer Cell 2004;6:625–630.

    PubMed  CAS  Google Scholar 

  84. Meulemans D, Bronner-Fraser M. Gene-regulatory interactions in neural crest evolution and development. Dev Cell. 2004;7:291–299.

    PubMed  CAS  Google Scholar 

  85. Steeg PS, Ouatas T, Halverson D, et al. Metastasis suppressor genes: basic biology and potential clinical use. Clin Breast Cancer. 2003;4:51–62.

    PubMed  CAS  Google Scholar 

  86. Berger JC, Vander Griend DJ, Robinson VL, et al. Metastasis suppressor genes: from gene identification to protein function and regulation. Cancer Biol Ther. 2005;4:805–812.

    PubMed  CAS  Google Scholar 

  87. Berger JC, Vander Griend D, Stadler WM, et al. Metastasis suppressor genes: signal transduction, cross-talk and the potential for modulating the behavior of metastatic cells. Anticancer Drugs 2004;15:559–568.

    PubMed  CAS  Google Scholar 

  88. Shevde LA, Welch DR. Metastasis suppressor pathways – an evolving paradigm. Cancer Lett. 2003;198:1–20.

    PubMed  CAS  Google Scholar 

  89. Steeg PS, Bevilacqua G, Kopper L, et al. Evidence for a novel gene associated with low tumor metastatic potential. J Natl Cancer Inst. 1988;80:200–204.

    PubMed  CAS  Google Scholar 

  90. Otsuki Y, Tanaka M, Yoshii S, et al. Tumor metastasis suppressor nm23H1 regulates Rac1 GTPase by interaction with Tiam1. Proc Natl Acad Sci USA. 2001;98:4385–4390.

    Google Scholar 

  91. Wagner PD, Steeg PS, Vu ND. Two-component kinase-like activity of nm23 correlates with its motility-suppressing activity. Proc Natl Acad Sci USA. 1997;94:9000–9005.

    Google Scholar 

  92. Hartsough MT, Morrison DK, Salerno M, et al. NM23-H1 metastasis suppressor phosphorylation of kinase suppressor of ras via a histidine protein kinase pathway. J Biol Chem. 2002;277:32389–32399.

    PubMed  CAS  Google Scholar 

  93. Hartsough MT, Clare SE, Mair M, et al. Elevation of breast carcinoma Nm23-H1 metastasis suppressor gene expression and reduced motility by DNA methylation inhibition. Cancer Res. 2001;61:2320–2327.

    PubMed  CAS  Google Scholar 

  94. Steeg PS, Palmieri D, Ouatas T, et al. Histidine kinases and histidine phosphorylated proteins in mammalian cell biology, signal transduction and cancer. Cancer Lett. 2003;190:1–12.

    PubMed  CAS  Google Scholar 

  95. Salerno M, Ouatas T, Palmieri D, et al. Inhibition of signal transduction by the nm23 metastasis suppressor: possible mechanisms. Clin Exptl Metastasis. 2003;20:3–10.

    CAS  Google Scholar 

  96. Freije JM, MacDonald NJ, Steeg PS. Nm23 and tumor metastasis: basic and translational advances. Biochem Soc Symp. 1998;63:261–271.

    PubMed  CAS  Google Scholar 

  97. Lombardi D, Lacombe ML, Paggi MG. nm23: unraveling its biological function in cell differentiation. J Cell Physiol. 2000;182:144–149.

    PubMed  CAS  Google Scholar 

  98. Scambia G, Ferrandina G, Marone M, et al. Nm23 in ovarian cancer: correlation with clinical outcome and other clinicopathologic and biochemical prognostic parameters. J Clin Oncol. 1996;14:334–342.

    PubMed  CAS  Google Scholar 

  99. Yamashita H, Kobayashi S, Iwase H, et al. Analysis of oncogenes and tumor suppressors in human breast cancer. Jpn J Cancer Res. 1993;84:871–878.

    PubMed  CAS  Google Scholar 

  100. Tommasi S, Fedele V, Crapolicchio A, et al. ErbB2 and the antimetastatic nm23/NDP kinase in regulating serum induced breast cancer invasion. Int J Mol Med. 2003;12:131–134.

    PubMed  CAS  Google Scholar 

  101. Nakopoulou LL, Tsitsimelis D, Lazaris AC, et al. Nm-23, c-erbB-2, and progesterone receptor expression in invasive breast cancer: correlation with clinicopathological parameters. Cancer Detect Prev. 1999;23:297–308.

    PubMed  CAS  Google Scholar 

  102. Ohba K, Miyata Y, Koga S, et al. Expression of nm23-H1 gene product in sarcomatous cancer cells of renal cell carcinoma: correlation with tumor stage and expression of matrix metalloproteinase-2, matrix metalloproteinase-9, sialyl Lewis X, and c-erbB-2. Urology 2005;65:1029–1034.

    PubMed  Google Scholar 

  103. Suzuki E, Ota T, Tsukuda K, et al. Nm23-H1 reduces in vitro cell migration and the liver metastatic potential of colon cancer cells by regulating myosin light chain phosphorylation. Int J Cancer. 2004;108:207–211.

    PubMed  CAS  Google Scholar 

  104. Seraj MJ, Samant RS, Verderame MF, et al. Functional evidence for a novel human breast carcinoma metastasis suppressor, BRMS1, encoded at chromosome 11q13. Cancer Res. 2000;60:2764–2779.

    PubMed  CAS  Google Scholar 

  105. Samant RS, Seraj MJ, Saunders MM, et al. Analysis of mechanisms underlying BRMS1 suppression of metastasis. Clin Exptl Metastasis. 2001;18:683–693.

    Google Scholar 

  106. Samant RS, Debies MT, Shevde LA, et al. Identification and characterization of muring ortholog (Brms1) of breast cancer metastasis suppressor 1 (BRMS1). Int J Cancer. 2002;97:15–20.

    PubMed  CAS  Google Scholar 

  107. Saunders MM, Seraj MJ, Li ZY, et al. Breast cancer metastatic potential correlates with a breakdown in homospecific and heterospecific gap junctional intercellular communication. Cancer Res 2001;61:1765–1767.

    PubMed  CAS  Google Scholar 

  108. Seraj MJ, Harding MA, Gildea JJ, et al. The relationship of BRMS1 and RhoGDI2 gene expression to metastatic potential in lineage related human bladder cancer cell lines. Clin Exptl Metastasis. 2001;18:519–525.

    Google Scholar 

  109. Shevde LA, Samant RS, Goldberg SF, et al. Suppression of human melanoma metastasis by the metastasis suppressor gene, BRMS1. Exp Cell Res. 2002;273:229–239.

    PubMed  CAS  Google Scholar 

  110. Meehan WJ, Samant RS, Hopper JE, et al. Breast cancer metastasis suppressor 1 (BRMS1) forms complexes with retinoblastoma-binding protein 1 (RBP1) and the mSin3 histone deacetylase complex and represses transcription. J Biol Chem. 2004;279:1562–1569.

    PubMed  CAS  Google Scholar 

  111. Cicek M, Fukuyama R, Welch DR, et al. Breast cancer metastasis suppressor 1 inhibits gene expression by targeting nuclear factor-kappaB activity. Cancer Res. 2005;65:3586–3595.

    PubMed  CAS  Google Scholar 

  112. Liu Y, Smith PW, Jones DR. Breast cancer metastasis suppressor 1 functions as a corepressor by enhancing histone deacetylase1-mediated deacetylation of RelA/p65 and promoting apoptosis. Mol Cell Biol. 2006;26:8683–8696.

    PubMed  CAS  Google Scholar 

  113. Samant RS, Clark DW, Fillmore RA, et al. Breast cancer metastasis suppressor 1 (BRMS1) inhibits osteopontin transcription by abrogating NF-kappaB activation. Mol Cancer. 2007;6:6–14.

    PubMed  Google Scholar 

  114. DeWald DB, Torabinejad J, Samant RS, et al. Metastasis suppression by breast cancer metastasis suppressor 1 involves reduction of phosphoinositide signaling in MDA-MB-435 breast carcinoma cells. Cancer Res. 2005;65:713–717.

    PubMed  CAS  Google Scholar 

  115. Ozes ON, Mayo LD, Gustin JA, et al. NF-kappaB activation by tumor necrosis factor requires the Akt serine-threonine kinase. Nature 1999;401:82–85.

    PubMed  CAS  Google Scholar 

  116. Kelly LM, Buggy Y, Hill A, et al. Expression of the breast cancer metastasis suppressor gene, BRMS1, in human breast carcinoma: lack of correlation with metastasis to axillary lymph nodes. Tumor Biol. 2005;26:213–216.

    CAS  Google Scholar 

  117. Lombardi G, Di Cristofano C, Capodanno A, et al. High level of messenger RNA for BRMS1 in primary breast carcinomas is associated with poor prognosis. Int J Cancer. 2007;120:1169–1178.

    PubMed  CAS  Google Scholar 

  118. Zhang Z, Yamashita H, Toyama T, et al. Reduced expression of the breast cancer metastasis suppressor 1 mRNA is correlated with poor progress in breast cancer. Clin Cancer Res. 2006;12:6410–6414.

    PubMed  CAS  Google Scholar 

  119. Hicks DG, Yoder BJ, Short S, et al. Loss of breast cancer metastasis suppressor 1 protein expression predicts reduced disease-free survival in subsets of breast cancer patients. Clin Cancer Research. 2006;12:6702–6708.

    CAS  Google Scholar 

  120. Lee J-H, Welch DR. Identification of highly expressed genes in metastasis-suppressed chromosome 6/human malignant melanoma hybrid cells using subtractive hybridization and differential display. Int J Cancer. 1997;71:1035–1044.

    PubMed  CAS  Google Scholar 

  121. Lee J-H, Miele ME, Hicks DJ, et al. KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J Natl Cancer Inst. 1999;88:1731–1737.

    Google Scholar 

  122. Goldberg SF, Miele ME, Hatta N, et al. Melanoma metastasis suppression by chromosome 6: Evidence for a pathway regulated by CRSP3 and TXNIP. Cancer Res. 2003;63:432–440.

    PubMed  CAS  Google Scholar 

  123. Lee J-H, Welch DR. Suppression of metastasis in human breast carcinoma MDA-MB-435 cells after transfection with the metastasis suppressor gene, KiSS-1. Cancer Res. 1997;57:2384–2387.

    PubMed  CAS  Google Scholar 

  124. Shirasaki F, Takata M, Hatta, N, et al. Loss of expression of the metastasis suppressor gene KiSS1 during melanoma progression and its association with LOH of chromosome 6q16.3-q23. Cancer Res. 2001;61:7422–7425.

    PubMed  CAS  Google Scholar 

  125. Nash KT, Welch DR. The KISS1 metastasis suppressor: mechanistic insights and clinical utility. Front Biosci. 2006;11:647–659.

    PubMed  CAS  Google Scholar 

  126. Mitchell DC, Abdelrahim M, Weng J, et al. Regulation of KiSS-1 metastasis suppressor gene expression in breast cancer cells by direct interaction of transcription factors activator protein-2alpha and specificity protein-1. J Biol Chem. 2006;281:51–58.

    PubMed  CAS  Google Scholar 

  127. Mitchell DC, Stafford LJ, Li D, et al. Transcriptional regulation of KiSS-1 gene expression in metastatic melanoma by specificity protein-1 and its coactivator DRIP-130. Oncogene 2006. doi: 10.1028/sj.onc.1209963, Epub September 11, 2006.

    Google Scholar 

  128. Kotani M, Detheux M, Vandenbogaerde A, et al. The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem. 2001;276:34631–34636.

    PubMed  CAS  Google Scholar 

  129. Ohtaki T, Shintani Y, Honda S, et al. Metastasis suppressor gene KiSS1 encodes peptide ligand of a G-protein-coupled receptor. Nature 2001;411:613–617.

    PubMed  CAS  Google Scholar 

  130. Ringel MD, Hardy E, Bernet VJ, et al. Metastin receptor is overexpressed in papillary thyroid cancer and activates MAP Kinase in thyroid cancer cells. J Clin Endocrin Metab. 2002;87:2399–2402.

    CAS  Google Scholar 

  131. Stafford LJ, Xia CZ, Ma WB, et al. Identification and characterization of mouse metastasis-suppressor KiSS1 and its G-protein-coupled receptor. Cancer Res. 2002;62:5399–5404.

    PubMed  CAS  Google Scholar 

  132. Muir AI, Chamberlain L, Elshourbagy NA, et al. AXOR12: A novel G protein-coupled receptor, activated by the peptide KiSS-1. J Biol Chem. 2001;276:28969–28975.

    PubMed  CAS  Google Scholar 

  133. Navenot JM, Wang Z, Chopin M, et al. Kisspeptin-10-induced signaling of GPR54 negatively regulates chemotactic responses mediated by CXCR4: a potential mechanism for the metastasis suppressor activity of kisspeptins. Cancer Res. 2005;65:10450–10456.

    PubMed  CAS  Google Scholar 

  134. Janneau JL, Maldonado-Estrada J, Tachdjian G, et al. Transcriptional expression of genes involved in cell invasion and migration by normal and tumoral trophoblast cells. J Clin Endocrin Metab. 2002;87:5336–5339.

    CAS  Google Scholar 

  135. Takino T, Koshikawa N, Miyamori H, et al. Cleavage of metastasis suppressor gene product KiSS-1 protein/metastin by matrix metalloproteinases. Oncogene 2003;22:4617–4626.

    PubMed  CAS  Google Scholar 

  136. Bilban M, Ghaffari-Tabrizi N, Hintermann E, et al. Kisspeptin-10, a KiSS-1/metastin-derived decapeptide, is a physiological invasion inhibitor of primary human trophoblasts. J Cell Sci 2004;117:1319–1328.

    PubMed  CAS  Google Scholar 

  137. Lymberis SC, Parhar PK, Katsoulakis E, et al. Pharmacogenomics and breast cancer. Pharmacogenomics 2005;5:31–55.

    Google Scholar 

  138. Bild AH, Yao G, Chang JT, et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 2006;439:353–357.

    PubMed  CAS  Google Scholar 

  139. Gutheil JC, Campbell TN, Pierce PR, et al. Targeted antiangiogenic therapy for cancer using Vitaxin: a humanized monoclonal antibody to the integrin alphavbeta3. Clin Cancer Res. 2000;6:3056–3061.

    PubMed  CAS  Google Scholar 

  140. Ouatas T, Halverson D, Steeg PS. Dexamethasone and medroxyprogesterone acetate elevate Nm23-H1 metastasis suppressor expression in metastatic human breast carcinoma cells via glucocorticoid receptor-dependent, transcriptional and post-transcriptional mechanisms: New uses for old compounds. Clin Cancer Res. 2003;9:3763–3772.

    PubMed  CAS  Google Scholar 

  141. Palmieri D, Halverson DO, Ouatas T, et al. Medroxyprogesterone acetate elevation of Nm23-H1 metastasis suppressor expression in hormone receptor-negative breast cancer. J Natl Cancer Inst. 2005;97:632–642.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny R. Welch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Richert, M.M., Welch, D.R. (2009). Metastasis of Hormone Receptor Positive Breast Cancer. In: Fuqua, S. (eds) Hormone Receptors in Breast Cancer. Cancer Treatment and Research, vol 147. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09463-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-09463-2_6

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-09462-5

  • Online ISBN: 978-0-387-09463-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics