Skip to main content

Screening for Enantioselective Lipases

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Abstract

Many lipolytic enzymes are enantioselective thus being able to distinguish between two enantiomers of a given racemic substrate. This property together with ample availability and comparatively easy handling makes lipolytic enzymes the most widely used class of biocatalysts in the chemical and pharmaceutical industries. However, lipase activity as well as selectivity is often negligible towards typical industrial substrates which usually do not resemble natural ones. Therefore, suitable enzymes must first be identified, usually by activity-based screening methods which, however, differ in reliability, throughput and surrogate function. Here, we describe important parameters determining the reliability and reproducibility of such screening systems for five different assays in detail. Moreover, comprehensive protocols for the synthesis of enantiopure lipase substrates and their use for screening of enantioselective lipases are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jaeger K-E, Dijkstra BW, Reetz MT (1999) Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu Rev Microbiol 53:315–351

    Article  CAS  PubMed  Google Scholar 

  2. Jaeger K-E, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13(4):390–397

    Article  CAS  PubMed  Google Scholar 

  3. Hausmann S, Jaeger K-E (2010) Lipolytic enzymes from bacteria. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Heidelberg, pp 1099–1126

    Chapter  Google Scholar 

  4. Barbayianni E, Kokotos G (2012) Biocatalyzed regio- and chemoselective ester cleavage: synthesis of bioactive molecules. ChemCatChem 4(5):592–608

    Article  CAS  Google Scholar 

  5. Fischer T, Pietruszka J (2010) Key building blocks via enzyme-mediated synthesis. Top Curr Chem 297:1–43

    Article  CAS  PubMed  Google Scholar 

  6. Chang SW, Shaw JF (2009) Biocatalysis for the production of carbohydrate esters. N Biotechnol 26(3–4):109–116

    Article  CAS  PubMed  Google Scholar 

  7. Lambusta D et al (2003) Application of lipase catalysis in organic solvents for selective protection–deprotection of bioactive compounds. J Mol Catal B: Enzym 22(5):271–277

    Article  CAS  Google Scholar 

  8. Nicolosi G et al (1999) Biocatalytic process for the preparation of 3-O-acyl-flavonoids. WO Patent 9966062

    Google Scholar 

  9. Pietruszka J, Simon RC (2009) Chemoenzymatic synthesis of (protected) psymberic acid. Eur J Org Chem 2009(21):3628–3634

    Article  Google Scholar 

  10. Bódalo A et al (2009) Screening and selection of lipases for the enzymatic production of polyglycerol polyricinoleate. Biochem Eng J 46(2):217–222

    Article  Google Scholar 

  11. Steenkamp L, Brady D (2003) Screening of commercial enzymes for the enantioselective hydrolysis of R,S-naproxen ester. Enzym Microb Technol 32(3–4):472–477

    Article  CAS  Google Scholar 

  12. Jaeger KE et al (2001) Directed evolution and the creation of enantioselective biocatalysts. Appl Microbiol Biotechnol 55(5):519–530

    Article  CAS  PubMed  Google Scholar 

  13. Liebeton K et al (2000) Directed evolution of an enantioselective lipase. Chem Biol 7(9):709–718

    Article  CAS  PubMed  Google Scholar 

  14. Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68(4):669–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lorenz P et al (2002) Screening for novel enzymes for biocatalytic processes: accessing the metagenome as a resource of novel functional sequence space. Curr Opin Biotechnol 13(6):572–577

    Article  CAS  PubMed  Google Scholar 

  16. Voget S et al (2003) Prospecting for novel biocatalysts in a soil metagenome. Appl Environ Microbiol 69(10):6235–6242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chow J et al (2012) The metagenome-derived enzymes LipS and LipT increase the diversity of known lipases. PLoS One 7(10), e47665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liebl W et al (2014) Alternative hosts for functional (meta)genome analysis. Appl Microbiol Biotechnol 98(19):8099–8109

    Article  CAS  PubMed  Google Scholar 

  19. Chusacultanachai S, Yuthavong Y (2004) Random mutagenesis strategies for construction of large and diverse clone libraries of mutated DNA fragments. Methods Mol Biol 270:319–334

    CAS  PubMed  Google Scholar 

  20. Reigstad LJ, Bartossek R, Schleper C (2011) Preparation of high-molecular weight DNA and metagenomic libraries from soils and hot springs. Methods Enzymol 496:319–344

    Article  CAS  PubMed  Google Scholar 

  21. Bornscheuer UT (2002) Methods to increase enantioselectivity of lipases and esterases. Curr Opin Biotechnol 13(6):543–547

    Article  CAS  PubMed  Google Scholar 

  22. Hoebenreich S et al (2015) Speeding up directed evolution: combining the advantages of solid-phase combinatorial gene synthesis with statistically guided reduction of screening effort. ACS Synth Biol 4:317–331

    Article  CAS  PubMed  Google Scholar 

  23. Franken B, Jaeger KE, Pietruszka J (2010) Screening for enantioselective enzymes. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Heidelberg, pp 2860–2876

    Google Scholar 

  24. Jaeger KE, Kovacic F (2014) Determination of lipolytic enzyme activities. Methods Mol Biol 1149:111–134

    Article  CAS  PubMed  Google Scholar 

  25. Ganske F, Bornscheuer UT (2005) Lipase-catalyzed glucose fatty acid ester synthesis in ionic liquids. Org Lett 7(14):3097–3098

    Article  CAS  PubMed  Google Scholar 

  26. Reetz MT et al (2001) A GC-based method for high-throughput screening of enantioselective catalysts. Catal Today 67(4):389–396

    Article  CAS  Google Scholar 

  27. Pirkle WH, Hoover DJ (1982) NMR chiral solvating agents. Top Stereochem 13:263–331

    CAS  Google Scholar 

  28. Goering HL, Eikenberry JN, Koermer GS (1971) Tris [3-(trifluoromethylhydroxymethylene)-d-camphorato] europium (III). Chiral shift reagent for direct determination of enantiomeric compositions. J Am Chem Soc 93(22):5913–5914

    Article  CAS  Google Scholar 

  29. Reetz MT et al (1999) A Method for high-throughput screening of enantioselective catalysts. Angew Chem Int Ed Engl 38(12):1758–1761

    Article  CAS  Google Scholar 

  30. Schrader W et al (2002) Second-generation MS-based high-throughput screening system for enantioselective catalysts and biocatalysts. Can J Chem 80(6):626–632

    Article  CAS  Google Scholar 

  31. Tielmann P et al (2003) A practical high-throughput screening system for enantioselectivity by using FTIR spectroscopy. Chem Eur J 9(16):3882–3887

    Article  CAS  PubMed  Google Scholar 

  32. Reetz MT et al (2002) A practical NMR-based high-throughput assay for screening enantioselective catalysts and biocatalysts. Adv Synth Catal 344(9):1008–1016

    Article  CAS  Google Scholar 

  33. Kazlauskas RJ (2006) Quantitative assay of hydrolases for activity and selectivity using color changes. In: Reymond J (ed) Enzyme assays. Wiley-VCH Verlag GmbH & Co. KGaA, pp 15–39

    Google Scholar 

  34. Trapp O (2007) Boosting the throughput of separation techniques by “multiplexing”. Angew Chem Int Ed Engl 46(29):5609–5613

    Article  CAS  PubMed  Google Scholar 

  35. Becker S et al (2005) A generic system for the Escherichia coli cell-surface display of lipolytic enzymes. FEBS Lett 579(5):1177–1182

    Article  CAS  PubMed  Google Scholar 

  36. Kugimiya W et al (1986) Molecular cloning and nucleotide sequence of the lipase gene from Pseudomonas fragi. Biochem Biophys Res Commun 141(1):185–190

    Article  CAS  PubMed  Google Scholar 

  37. Kouker G, Jaeger K-E (1987) Specific and sensitive plate assay for bacterial lipases. Appl Environ Microbiol 53(1):211–213

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Janes LE, Löwendahl AC, Kazlauskas RJ (1998) Quantitative screening of hydrolase libraries using pH indicators: identifying active and enantioselective hydrolases. Chem Eur J 4(11):2324–2331

    Article  CAS  Google Scholar 

  39. Bottcher D, Bornscheuer UT (2006) High-throughput screening of activity and enantioselectivity of esterases. Nat Protoc 1(5):2340–2343

    Article  PubMed  Google Scholar 

  40. Arnold FH (1998) Design by directed evolution. Acc Chem Res 31(3):125–131

    Article  CAS  Google Scholar 

  41. Reetz MT et al (1997) Creation of enantioselective biocatalysts for organic chemistry by in vitro evolution. Angew Chem Int Ed Engl 36(24):2830–2832

    Article  CAS  Google Scholar 

  42. Dolinsky VW et al (2004) Regulation of the enzymes of hepatic microsomal triacylglycerol lipolysis and re-esterification by the glucocorticoid dexamethasone. Biochem J 378(Pt 3):967–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jacks TJ, Kircher HW (1967) Fluorometric assay for the hydrolytic activity of lipase using fatty acyl esters of 4-methylumbelliferone. Anal Biochem 21(2):279–285

    Article  CAS  PubMed  Google Scholar 

  44. Fluxá VS, Wahler D, Reymond J-L (2008) Enzyme assay and activity fingerprinting of hydrolases with the red-chromogenic adrenaline test. Nat Protoc 3(8):1270–1277

    Article  PubMed  Google Scholar 

  45. Reetz MT et al (2000) Circular dichroism as a detection method in the screening of enantioselective catalysts. Chirality 12(5–6):479–482

    Article  CAS  PubMed  Google Scholar 

  46. Faber K (2011) Biotransformations in organic chemistry: a textbook. Springer

    Google Scholar 

  47. Darley DJ et al (2009) Synthesis and use of isotope-labelled substrates for a mechanistic study on human α-methylacyl-CoA racemase 1A (AMACR; P504S). Org Biomol Chem 7(3):543–552

    Article  CAS  PubMed  Google Scholar 

  48. Neises B, Steglich W (1978) Simple method for the esterification of carboxylic acids. Angew Chem Int Ed Engl 17(7):522–524

    Article  Google Scholar 

  49. Wahler D et al (2004) Adrenaline profiling of lipases and esterases with 1,2-diol and carbohydrate acetates. Tetrahedron 60(3):703–710

    Article  CAS  Google Scholar 

  50. Reetz MT (2006) High-throughput screening systems for assaying the enantioselectivity of enzymes. In: Reymond J (ed) Enzyme assays. Wiley-VCH Verlag GmbH & Co. KGaA, pp 41–76

    Google Scholar 

  51. Winkler UK, Stuckmann M (1979) Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. J Bacteriol 138(3):663–670

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Franken B, Jaeger KE, Pietruszka J (2010) Protocols to screen for enantioselective lipases. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Heidelberg, pp 4581–4586

    Google Scholar 

  53. Reetz MT et al (2007) Learning from directed evolution: further lessons from theoretical investigations into cooperative mutations in lipase enantioselectivity. Chembiochem 8(1):106–112

    Article  CAS  PubMed  Google Scholar 

  54. Janes LE, Kazlauskas RJ (1997) Quick E. A fast spectrophotometric method to measure the enantioselectivity of hydrolases. J Org Chem 62(14):4560–4561

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Erich Jaeger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Classen, T., Kovacic, F., Lauinger, B., Pietruszka, J., Jaeger, KE. (2016). Screening for Enantioselective Lipases. In: McGenity, T., Timmis, K., Nogales, B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2016_218

Download citation

  • DOI: https://doi.org/10.1007/8623_2016_218

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53113-6

  • Online ISBN: 978-3-662-53115-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics