Skip to main content

Real-Time Trafficking of Agrobacterium Virulence Protein VirE2 Inside Host Cells

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 418))

Abstract

A. tumefaciens delivers T-DNA and virulence proteins, including VirE2, into host plant cells, where T-DNA is proposed to be protected by VirE2 molecules as a nucleoprotein complex (T-complex) and trafficked into the nucleus. VirE2 is a protein that can self-aggregate and contains targeting sequences so that it can efficiently move from outside of a cell to the nucleus. We adopted a split-GFP approach and generated a VirE2-GFP fusion which retains the self-aggregating property and the targeting sequences. The fusion protein is fully functional and can move inside cells in real time in a readily detectable format: fluorescent and unique filamentous aggregates. Upon delivery mediated by the bacterial type IV secretion system (T4SS), VirE2-GFP is internalized into the plant cells via clathrin adaptor complex AP2-mediated endocytosis. Subsequently, VirE2-GFP binds to membrane structures such as the endoplasmic reticulum (ER) and is trafficked within the cell. This enables us to observe the highly dynamic activities of the cell. If a compound, a gene, or a condition affects the cell, the cellular dynamics shown by the VirE2-GFP will be affected and thus readily observed by confocal microscopy. This represents an excellent model to study the delivery and trafficking of an exogenously produced and delivered protein inside a cell in a natural setting in real time. The model may be used to explore the theoretical and applied aspects of natural protein delivery and targeting.

Haitao Tu, Xiaoyang Li, Qinghua Yang, These authors contributed equally.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aguilar J, Zupan J, Cameron TA, Zambryski PC (2010) Agrobacterium type IV secretion system and its substrates form helical arrays around the circumference of virulence-induced cells. Proc Natl Acad Sci USA 107:3758–3763

    Article  CAS  Google Scholar 

  • Anand A, Krichevsky A, Schornack S, Lahaye T, Tzfira T, Tang Y, Citovsky V, Mysore KS (2007) Arabidopsis VIRE2 INTERACTING PROTEIN2 is required for Agrobacterium T-DNA integration in plants. Plant Cell 19:1695–1708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atmakuri K, Ding Z, Christie PJ (2003) VirE2, a type IV secretion substrate, interacts with the VirD4 transfer protein at cell poles of Agrobacterium tumefaciens. Mol Microbiol 49:1699–1713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avisar D, Prokhnevsky AI, Makarova KS, Koonin EV, Dolja VV (2008) Myosin XI-K Is required for rapid trafficking of Golgi stacks, peroxisomes, and mitochondria in leaf cells of Nicotiana benthamiana. Plant Physiol 146:1098–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banbury DN, Oakley JD, Sessions RB, Banting G (2003) Tyrphostin A23 inhibits internalization of the transferrin receptor by perturbing the interaction between tyrosine motifs and the medium chain subunit of the AP-2 adaptor complex. J Biol Chem 278:12022–12028

    Article  CAS  PubMed  Google Scholar 

  • Bar M, Avni A (2014) Endosomal trafficking and signaling in plant defense responses. Current Opin Plant Biol 22:86–92

    Article  CAS  Google Scholar 

  • Beijersbergen A, Dulk-Ras AD, Schilperoort RA, Hooykaas PJ (1992) Conjugative transfer by the virulence system of Agrobacterium tumefaciens. Science 256:1324–1327

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee S, Lee LY, Oltmanns H, Cao H, Veena, Cuperus J, Gelvin SB (2008) IMPa-4, an Arabidopsis importin alpha isoform, is preferentially involved in Agrobacterium-mediated plant transformation. Plant Cell 20:2661–2680

    Google Scholar 

  • Bonifacino JS, Traub LM (2003) Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 72:395–447

    Article  CAS  PubMed  Google Scholar 

  • Broothaerts W, Mitchell H, Weir B, Kaines S, Smith L, Yang W, Mayer J, Roa-Rodríguez C, Jefferson RA (2005) Gene transfer to plants by diverse species of bacteria. Nature 433:629–633

    Article  CAS  PubMed  Google Scholar 

  • Bundock P, den Dulk-Ras A, Beijersbergen A, Hooykaas PJ (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J 14:3206–3214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabantous S, Pedelacq JD, Mark BL, Naranjo C, Terwilliger TC, Waldo GS (2005) Recent advances in GFP folding reporter and split-GFP solubility reporter technologies. Application to improving the folding and solubility of recalcitrant proteins from Mycobacterium tuberculosis. J Struc Funct Genom 6:113–119

    Article  CAS  Google Scholar 

  • Cascales E, Christie PJ (2004) Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 304:1170–1173

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Irani NG, Friml J (2011) Clathrin-mediated endocytosis: the gateway into plant cells. Curr Opin Plant Biol 14:674–682

    Article  CAS  PubMed  Google Scholar 

  • Chilton M-D, Drummond MH, Merlo DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11:263–271

    Article  CAS  PubMed  Google Scholar 

  • Citovsky V, DEV G, Zambryski P (1988) Single-stranded DNA binding protein encoded by the virE locus of Agrobacterium tumefaciens. Science 240:501–504

    Article  CAS  PubMed  Google Scholar 

  • Citovsky V, Guralnick B, Simon MN, Wall JS (1997) The molecular structure of Agrobacterium VirE2-single stranded DNA complexes involved in nuclear import. J Mol Biol 271:718–727

    Article  CAS  PubMed  Google Scholar 

  • Citovsky V, Zupan J, Warnick D, Zambryski P (1992) Nuclear localization of Agrobacterium VirE2 protein in plant cells. Science 256:1802–1805

    Article  CAS  PubMed  Google Scholar 

  • Contento AL, Bassham DC (2012) Structure and function of endosomes in plant cells. J Cell Sci 125:3511–3518

    Article  CAS  PubMed  Google Scholar 

  • Cossart P, Helenius A (2014) Endocytosis of viruses and bacteria. Cold Spring Harb Perspec Biol 6:a016972

    Article  Google Scholar 

  • De Cleene M, De Ley J (1976) The host range of crown gall. Bot Rev 42:389–466

    Article  Google Scholar 

  • de Groot MJA, Bundock P, Hooykaas PJJ, Beijersbergen AGM (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16:839

    Article  PubMed  Google Scholar 

  • Delvigne F, Pêcheux H, Tarayre C (2015) Fluorescent reporter libraries as useful tools for optimizing microbial cell factories: a review of the current methods and applications. Frontier Bioengin Biotechnol 3:147

    Google Scholar 

  • Dhonukshe P, Aniento F, Hwang I, Robinson DG, Mravec J, Stierhof YD, Friml J (2007) Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. Curr Biol CB 17:520–527

    Article  CAS  PubMed  Google Scholar 

  • Djamei A, Pitzschke A, Nakagami H, Rajh I, Hirt H (2007) Trojan horse strategy in Agrobacterium transformation: abusing MAPK defense signaling. Science 318:453–456

    Article  CAS  PubMed  Google Scholar 

  • Dumas F, Duckely M, Pelczar P, Van Gelder P, Hohn B (2001) An Agrobacterium VirE2 channel for transferred-DNA transport into plant cells. Proc Natl Acad Sci USA 98:485–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dym O, Albeck S, Unger T, Jacobovitch J, Branzburg A, Michael Y, Frenkiel-Krispin D, Wolf SG, Elbaum M (2008) Crystal structure of the Agrobacterium virulence complex VirE1-VirE2 reveals a flexible protein that can accommodate different partners. Proc Natl Acad Sci USA 105:11170–11175

    Article  CAS  Google Scholar 

  • Ebine K, Fujimoto M, Okatani Y, Nishiyama T, Goh T, Ito E, Dainobu T, Nishitani A, Uemura T, Sato MH, Thordal-Christensen H, Tsutsumi N, Nakano A, Ueda T (2011) A membrane trafficking pathway regulated by the plant-specific RAB GTPase ARA6. Nat Cell Biol 13:853–859

    Article  CAS  PubMed  Google Scholar 

  • Engstrom P, Zambryski P, Van Montagu M, Stachel S (1987) Characterization of Agrobacterium tumefaciens virulence proteins induced by the plant factor acetosyringone. J Mol Biol 197:635–645

    Article  CAS  PubMed  Google Scholar 

  • Foresti O, Denecke J (2008) Intermediate organelles of the plant secretory pathway: identity and function. Traffic 9:1599–1612

    Article  CAS  PubMed  Google Scholar 

  • Frenkiel-Krispin D, Wolf SG, Albeck S, Unger T, Peleg Y, Jacobovitch J, Michael Y, Daube S, Sharon M, Robinson CV, Svergun DI, Fass D, Tzfira T, Elbaum M (2007) Plant transformation by Agrobacterium tumefaciens: modulation of single-stranded DNA-VirE2 complex assembly by VirE1. J Biol Chem 282:3458–3464

    Article  CAS  PubMed  Google Scholar 

  • Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jurgens G (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219–230

    Article  CAS  PubMed  Google Scholar 

  • Gruenberg J, van der Goot FG (2006) Mechanisms of pathogen entry through the endosomal compartments. Nat Rev Mol Cell Biol 7:495

    Article  CAS  PubMed  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  • Hwang H-H, Gelvin SB (2004) Plant proteins that interact with VirB2, the Agrobacterium tumefaciens pilin protein, mediate plant transformation. Plant Cell 16:3148–3167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson LP, Kelly BT, McCoy AJ, Gaffry T, James LC, Collins BM, Honing S, Evans PR, Owen DJ (2010) A large-scale conformational change couples membrane recruitment to cargo binding in the AP2 clathrin adaptor complex. Cell 141:1220–1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kathiresan S, Chandrashekar A, Ravishankar GA, Sarada R (2009) Agrobacterium-mediated transformation in the green alga Haematococcus Pluvialis (Chlorophyceae, Volvocales) 1. J Phycol 45:642–649

    Article  CAS  PubMed  Google Scholar 

  • Kim SY, Xu Z-Y, Song K, Kim DH, Kang H, Reichardt I, Sohn EJ, Friml J, Juergens G, Hwang I (2013) Adaptor protein complex 2–mediated endocytosis is crucial for male reproductive organ development in Arabidopsis. Plant Cell 25:2970–2985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitakura S, Vanneste S, Robert S, Lofke C, Teichmann T, Tanaka H, Friml J (2011) Clathrin mediates endocytosis and polar distribution of PIN auxin transporters in Arabidopsis. Plant Cell 23:1920–1931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krucker T, Siggins GR, Halpain S (2000) Dynamic actin filaments are required for stable long-term potentiation (LTP) in area CA1 of the hippocampus. Proc Natl Acad Sci USA 97:6856–6861

    Article  CAS  Google Scholar 

  • Kurth EG, Peremyslov VV, Turner HL, Makarova KS, Iranzo J, Mekhedov SL, Koonin EV, Dolja VV (2017) Myosin-driven transport network in plants. Proc Natl Acad Sci USA 114:E1385–E1394

    Article  CAS  Google Scholar 

  • Lapham R, Lee LY, Tsugama D, Lee S, Mengiste T, Gelvin SB (2018) VIP1 and its homologs are not required for Agrobacterium-mediated transformation, but play a role in Botrytis and salt stress responses. Front Plant Sci 9:749

    Article  PubMed  PubMed Central  Google Scholar 

  • Lawrence CJ, Morris NR, Meagher RB, Dawe RK (2001) Dyneins have run their course in plant lineage. Traffic 2:362–363

    Article  CAS  PubMed  Google Scholar 

  • Lee LY, Fang MJ, Kuang LY, Gelvin SB (2008) Vectors for multi-color bimolecular fluorescence complementation to investigate protein-protein interactions in living plant cells. Plant Methods 4:24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee LY, Wu FH, Hsu CT, Shen SC, Yeh HY, Liao DC, Fang MJ, Liu NT, Yen YC, Dokladal L, Sykorova E, Gelvin SB, Lin CS (2012) Screening a cDNA library for protein-protein interactions directly in planta. Plant Cell 24:1746–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J-F, Nebenführ A (2007) Organelle targeting of myosin XI is mediated by two globular tail subdomains with separate cargo binding sites. J Biol Chem 282:20593–20602

    Article  CAS  PubMed  Google Scholar 

  • Li X, Pan SQ (2017) Agrobacterium delivers VirE2 protein into host cells via clathrin-mediated endocytosis. Sci Adv 3:e1601528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li X, Yang Q, Tu H, Lim Z, Pan SQ (2014) Direct visualization of Agrobacterium-delivered VirE2 in recipient cells. Plant J 77:487–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S-H, Wong ML, Craik CS, Brodsky FM (1995) Regulation of clathrin assembly and trimerization defined using recombinant triskelion hubs. Cell 83:257–267

    Article  CAS  PubMed  Google Scholar 

  • Maizel A, Dv Wangenheim, Federici F, Haseloff J, Stelzer EHK (2011) High-resolution live imaging of plant growth in near physiological bright conditions using light sheet fluorescence microscopy. Plant J 68:377–385

    Article  CAS  PubMed  Google Scholar 

  • Marton L, Wullems GJ, Molendijk L, Schilperoort RA (1979) In vitro transformation of cultured cells from Nicotiana tabacum by Agrobacterium tumefaciens. Nature 277:129

    Article  Google Scholar 

  • McMahon HT, Boucrot E (2011) Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 12:517–533

    Article  CAS  PubMed  Google Scholar 

  • Mercer J, Schelhaas M, Helenius A (2010) Virus entry by endocytosis. Ann Rev Biochem 79:803–833

    Article  CAS  PubMed  Google Scholar 

  • Misumi Y, Misumi Y, Miki K, Takatsuki A, Tamura G, Ikehara Y (1986) Novel blockade by brefeldin A of intracellular transport of secretory proteins in cultured rat hepatocytes. J Biol Chem 261:11398–11403

    Article  CAS  PubMed  Google Scholar 

  • Nakano RT, Matsushima R, Ueda H, Tamura K, Shimada T, Li L, Hayashi Y, Kondo M, Nishimura M, Hara-Nishimura I (2009) GNOM-LIKE1/ERMO1 and SEC24a/ERMO2 are required for maintenance of endoplasmic reticulum morphology in Arabidopsis thaliana. Plant Cell 21:3672–3685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson BK, Cai X, Nebenfuhr A (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51:1126–1136

    Article  CAS  PubMed  Google Scholar 

  • Pedelacq JD, Cabantous S, Tran T, Terwilliger TC, Waldo GS (2006) Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol 24:79–88

    Article  CAS  PubMed  Google Scholar 

  • Peremyslov VV, Mockler TC, Filichkin SA, Fox SE, Jaiswal P, Makarova KS, Koonin EV, Dolja VV (2011) Expression, splicing, and evolution of the myosin gene family in plants. Plant Physiol 155:1191–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Personnic N, Barlocher K, Finsel I, Hilbi H (2016) Subversion of retrograde trafficking by translocated pathogen effectors. Trends Microbiol 24:450–462

    Article  CAS  PubMed  Google Scholar 

  • Piers KL, Heath JD, Liang XY, Stephens KM, Nester EW (1996) Agrobacterium tumefaciens-mediated transformation of yeast. Proc Natl Acad Sci USA 93:1613–1618

    Article  CAS  Google Scholar 

  • Rhee Y, Gurel F, Gafni Y, Dingwall C, Citovsky V (2000) A genetic system for detection of protein nuclear import and export. Nat Biotechnol 18:433–437

    Article  CAS  PubMed  Google Scholar 

  • Robert S, Chary SN, Drakakaki G, Li S, Yang Z, Raikhel NV, Hicks GR (2008) Endosidin1 defines a compartment involved in endocytosis of the brassinosteroid receptor BRI1 and the auxin transporters PIN2 and AUX1. Proc Natl Acad Sci USA 105:8464–8469

    Article  CAS  Google Scholar 

  • Rossi L, Hohn B, Tinland B (1996) Integration of complete transferred DNA units is dependent on the activity of virulence E2 protein of Agrobacterium tumefaciens. Proc Natl Acad Sci USA 93:126–130

    Article  CAS  Google Scholar 

  • Saitoh M, Ishikawa T, Matsushima S, Naka M, Hidaka H (1987) Selective inhibition of catalytic activity of smooth muscle myosin light chain kinase. J Biol Chem 262:7796–7801

    Article  CAS  PubMed  Google Scholar 

  • Sakalis PA, van Heusden GP, Hooykaas PJ (2014) Visualization of VirE2 protein translocation by the Agrobacterium type IV secretion system into host cells. Microbiol Open 3:104–117

    Article  CAS  Google Scholar 

  • Salman H, Abu-Arish A, Oliel S, Loyter A, Klafter J, Granek R, Elbaum M (2005) Nuclear localization signal peptides induce molecular delivery along microtubules. Biophys J 89:2134–2145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheiffele P, Pansegrau W, Lanka E (1995) Initiation of Agrobacterium tumefaciens T-DNA processing. Purified proteins VirD1 and VirD2 catalyze site- and strand-specific cleavage of superhelical T-border DNA in vitro. J Biol Chem 270:1269–1276

    Article  CAS  PubMed  Google Scholar 

  • Schrammeijer B, den Dulk-Ras A, Vergunst AC, Jurado Jacome E, Hooykaas PJ (2003) Analysis of Vir protein translocation from Agrobacterium tumefaciens using Saccharomyces cerevisiae as a model: evidence for transport of a novel effector protein VirE3. Nucleic Acids Res 31:860–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Lee LY, Gelvin SB (2014) Is VIP1 important for Agrobacterium-mediated transformation? Plant J. 79:848–860

    Article  CAS  PubMed  Google Scholar 

  • Simone M, McCullen CA, Stahl LE, Binns AN (2001) The carboxy-terminus of VirE2 from Agrobacterium tumefaciens is required for its transport to host cells by the virB-encoded type IV transport system. Mol Microbiol 41:1283–1293

    Article  CAS  PubMed  Google Scholar 

  • Skoufias DA, Wilson L (1992) Mechanism of inhibition of microtubule polymerization by colchicine: inhibitory potencies of unliganded colchicine and tubulin-colchicine complexes. Biochemistry 31:738–746

    Article  CAS  PubMed  Google Scholar 

  • Spooner RA, Smith DC, Easton AJ, Roberts LM, Lord JM (2006) Retrograde transport pathways utilised by viruses and protein toxins. Virol J 3:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Traub LM (2009) Tickets to ride: selecting cargo for clathrin-regulated internalization. Nat Rev Mol Cell Biol 10:583–596

    Article  CAS  PubMed  Google Scholar 

  • Traub LM, Bonifacino JS (2013) Cargo recognition in clathrin-mediated endocytosis. Cold Spring Harb Perspect Biol 5:a016790

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tzfira T, Citovsky V (2001) Comparison between nuclear localization of nopaline and octopine-specific Agrobacterium VirE2 proteins in plant, yeast and mammalian cells. Mol Plant Pathol 2:171–176

    Article  CAS  PubMed  Google Scholar 

  • Tzfira T, Vaidya M, Citovsky V (2002) Increasing plant susceptibility to Agrobacterium infection by overexpression of the Arabidopsis nuclear protein VIP1. Proc Natl Acad Sci USA 99:10435–10440

    Article  CAS  Google Scholar 

  • Ueda H, Yokota E, Kutsuna N, Shimada T, Tamura K, Shimmen T, Hasezawa S, Dolja VV, Hara-Nishimura I (2010) Myosin-dependent endoplasmic reticulum motility and F-actin organization in plant cells. Proc Natl Acad Sci USA 107:6894–6899

    Article  CAS  Google Scholar 

  • Ueda T, Uemura T, Sato MH, Nakano A (2004) Functional differentiation of endosomes in Arabidopsis cells. Plant J 40:783–789

    Article  CAS  PubMed  Google Scholar 

  • Van Engelenburg SB, Palmer AE (2010) Imaging type-III secretion reveals dynamics and spatial segregation of Salmonella effectors. Nat Methods 7:325–330

    Article  PubMed  CAS  Google Scholar 

  • Vergunst AC, Schrammeijer B, den Dulk-Ras A, de Vlaam CM, Regensburg-Tuink TJ, Hooykaas PJ (2000) VirB/D4-dependent protein translocation from Agrobacterium into plant cells. Science 290:979–982

    Article  CAS  PubMed  Google Scholar 

  • Vergunst AC, van Lier MC, den Dulk-Ras A, Stuve TA, Ouwehand A, Hooykaas PJ (2005) Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium. Proc Natl Acad Sci USA 102:832–837

    Article  CAS  Google Scholar 

  • Wang K, Herrera-Estrella L, Van Montagu M, Zambryski P (1984) Right 25 bp terminus sequence of the nopaline T-DNA is essential for and determines direction of DNA transfer from agrobacterium to the plant genome. Cell 38:455–462

    Article  CAS  PubMed  Google Scholar 

  • Ward DV, Zambryski PC (2001) The six functions of Agrobacterium VirE2. Proc Natl Acad Sci USA 98:385–386

    Article  CAS  Google Scholar 

  • Wu LG, Hamid E, Shin W, Chiang HC (2014) Exocytosis and endocytosis: modes, functions, and coupling mechanisms. Ann Rev Physiol 76:301–331

    Article  CAS  Google Scholar 

  • Yang Q, Li X, Tu H, Pan SQ (2017) Agrobacterium-delivered virulence protein VirE2 is trafficked inside host cells via a myosin XI-K–powered ER/actin network. Proc Natl Acad Sci USA 114:2982–2987

    Article  CAS  Google Scholar 

  • Yang Q, Tu H, Pan SQ (2018) How does Agrobacterium virulence protein VirE2 hijack host actomyosin motility system? CommunIntegr Biol 11:e1415599

    Google Scholar 

  • Yanofsky MF, Porter SG, Young C, Albright LM, Gordon MP, Nester EW (1986) The virD operon of Agrobacterium tumefaciens encodes a site-specific endonuclease. Cell 47:471–477

    Article  CAS  PubMed  Google Scholar 

  • Yokota E, Yukawa C, Muto S, Sonobe S, Shimmen T (1999) Biochemical and immunocytochemical characterization of two types of myosins in cultured tobacco bright yellow-2 cells. Plant Physiol 121:525–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yusibov VM, Steck TR, Gupta V, Gelvin SB (1994) Association of single-stranded transferred DNA from Agrobacterium tumefaciens with tobacco cells. Proc Natl Acad Sci USA 91:2994–2998

    Article  CAS  Google Scholar 

  • Zhou XR, Christie PJ (1999) Mutagenesis of the Agrobacterium VirE2 single-stranded DNA-binding protein identifies regions required for self-association and interaction with VirE1 and a permissive site for hybrid protein construction. J Bacteriol 181:4342–4352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge grant supports from Singapore Ministry of Education (R-154-000-588-112 and R-154-000-685-112) and National Natural Science Foundation of China (Grant No. 31700118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen Q. Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tu, H., Li, X., Yang, Q., Peng, L., Pan, S.Q. (2018). Real-Time Trafficking of Agrobacterium Virulence Protein VirE2 Inside Host Cells. In: Gelvin, S. (eds) Agrobacterium Biology. Current Topics in Microbiology and Immunology, vol 418. Springer, Cham. https://doi.org/10.1007/82_2018_131

Download citation

Publish with us

Policies and ethics