Skip to main content

Cellular Entry of Polyomaviruses

  • Chapter
  • First Online:
Cell Entry by Non-Enveloped Viruses

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 343))

Abstract

Polyomaviruses (Pys) are nonenveloped DNA tumor viruses that include the murine polyomavirus (mPy), simian virus 40 (SV40), and the human BK, JC, KI, WU, and Merkel Cell viruses. To cause infection, Pys must enter host cells and navigate through various intracellular compartments, where they undergo sequential conformational changes enabling them to uncoat and deliver the DNA genome into the nucleus. The ensuing transcription and replication of the genome leads to lytic infection or cell transformation. In recent years, a more coherent understanding of how Pys are transported from the plasma membrane to the nucleus is starting to emerge. This review will focus on the decisive steps of Py entry, including engagement of the host cell receptor, targeting to the endoplasmic reticulum (ER), penetration across the ER membrane, nuclear entry, and genome release. Strikingly, a number of these steps resemble the intoxication pathway of the AB5 bacterial toxins. Thus, as Pys and bacterial toxins hijack similar cellular machineries during infection, a general principle appears to guide their entry into host cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CT:

Cholera toxin

ER:

Endoplasmic reticulum

mPy:

Murine polyomavirus

PDI:

Protein disulfide isomerase

Pys:

Polyomaviruses

SV40:

Simian virus 40

References

  • Allander T, Andreasson K, Gupta S, Bjerkner A, Bogdanovic G, Persson MA, Dalianis T, Ramqvist T, Andersson B (2007) Identification of a third human polyomavirus. J Virol 81:4130–4136

    Article  PubMed  CAS  Google Scholar 

  • Anderson HA, Chen Y, Norkin LC (1996) Bound simian virus 40 translocates to caveolin-enriched membrane domains, and its entry is inhibited by drugs that selectively disrupt caveolae. Mol Biol Cell 7:1825–1834

    PubMed  CAS  Google Scholar 

  • Anderson HA, Chen Y, Norkin LC (1998) MHC class I molecules are enriched in caveolae but do not enter with simian virus 40. J Gen Virol 79:1469–1477

    PubMed  CAS  Google Scholar 

  • Atwood WJ, Norkin LC (1989) Class I major histocompatibility proteins as cell surface receptors for simian virus 40. J Virol 63:4474–4477

    PubMed  CAS  Google Scholar 

  • Basak S, Turner H, Compans RW (1992) Expression of SV40 receptors on apical surfaces of polarized epithelial cells. Virology 190:393–402

    Article  PubMed  CAS  Google Scholar 

  • Bernardi KM, Forster ML, Lencer WI, Tsai B (2008) Derlin-1 facilitates the retro-translocation of cholera toxin. Mol Biol Cell 19:877–884

    Article  PubMed  CAS  Google Scholar 

  • Brady JN, Winston VD, Consigli RA (1978) Characterization of a DNA-protein complex and capsomere subunits derived from polyoma virus by treatment with ethyleneglycol-bis-N, N′-tetraacetic acid and dithiothreitol. J Virol 27:193–204

    PubMed  CAS  Google Scholar 

  • Brandenburg B, Lee LY, Lakadamyali M, Rust MJ, Zhuang X, Hogle JM (2007) Imaging poliovirus entry in live cells. PLoS Biol 5:e183

    Article  PubMed  Google Scholar 

  • Breau WC, Atwood WJ, Norkin LC (1992) Class I major histocompatibility proteins are an essential component of the simian virus 40 receptor. J Virol 66:2037–2045

    PubMed  CAS  Google Scholar 

  • Cahan LD, Singh R, Paulson JC (1983) Sialyloligosaccharide receptors of binding variants of polyoma virus. Virology 130:281–289

    Article  PubMed  CAS  Google Scholar 

  • Campanero-Rhodes MA, Smith A, Chai W, Sonnino S, Mauri L, Childs RA, Zhang Y, Ewers H, Helenius A, Imberty A, Feizi T (2007) N-glycolyl GM1 ganglioside as a receptor for simian virus 40. J Virol 81:12846–12858

    Article  PubMed  CAS  Google Scholar 

  • Carbone M, Reale A, Di Sauro A, Sthandier O, Garcia MI, Maione R, Caiafa P, Amati P (2006) PARP-1 interaction with VP1 capsid protein regulates polyomavirus early gene expression. J Mol Biol 363:773–785

    Article  PubMed  CAS  Google Scholar 

  • Caruso M, Belloni L, Sthandier O, Amati P, Garcia MI (2003) Alpha4beta1 integrin acts as a cell receptor for murine polyomavirus at the postattachment level. J Virol 77:3913–3921

    Article  PubMed  CAS  Google Scholar 

  • Cavaldesi M, Caruso M, Sthandier O, Amati P, Garcia MI (2004) Conformational changes of murine polyomavirus capsid proteins induced by sialic acid binding. J Biol Chem 279:41573–41579

    Article  PubMed  CAS  Google Scholar 

  • Chen XS, Stehle T, Harrison SC (1998) Interaction of polyomavirus internal protein VP2 with the major capsid protein VP1 and implications for participation of VP2 in viral entry. EMBO J 17:3233–3240

    Article  PubMed  CAS  Google Scholar 

  • Chromy LR, Oltman A, Estes PA, Garcea RL (2006) Chaperone-mediated in vitro disassembly of polyoma- and papillomaviruses. J Virol 80:5086–5091

    Article  PubMed  CAS  Google Scholar 

  • Clever J, Yamada M, Kasamatsu H (1991) Import of simian virus 40 virions through nuclear pore complexes. Proc Natl Acad Sci USA 88:7333–7337

    Article  PubMed  CAS  Google Scholar 

  • Daniels R, Rusan NM, Wadsworth P, Hebert DN (2006) SV40 VP2 and VP3 insertion into ER membranes is controlled by the capsid protein VP1: implications for DNA translocation out of the ER. Mol Cell 24:955–966

    Article  PubMed  CAS  Google Scholar 

  • Diacumakos EG, Gershey EL (1977) Uncoating and gene expression of simian virus 40 in CV-1 cell nuclei inoculated by microinjection. J Virol 24:903–906

    PubMed  CAS  Google Scholar 

  • Dugan AS, Eash S, Atwood WJ (2005) An N-linked glycoprotein with alpha(2, 3)-linked sialic acid is a receptor for BK virus. J Virol 79:14442–14445

    Article  PubMed  CAS  Google Scholar 

  • Eash S, Querbes W, Atwood WJ (2004) Infection of vero cells by BK virus is dependent on caveolae. J Virol 78:11583–11590

    Article  PubMed  CAS  Google Scholar 

  • Eddy BE, Rowe WP, Hartley JW, Stewart SE, Huebner RJ (1958) Hemagglutination with the SE polyoma virus. Virology 6:290–291

    Article  PubMed  CAS  Google Scholar 

  • Elphick GF, Querbes W, Jordan JA, Gee GV, Eash S, Manley K, Dugan A, Stanifer M, Bhatnagar A, Kroeze WK, Roth BL, Atwood WJ (2004) The human polyomavirus, JCV, uses serotonin receptors to infect cells. Science 306:1380–1383

    Article  PubMed  CAS  Google Scholar 

  • Erickson KD, Garcea RL, Tsai B (2009) Ganglioside GT1b is a putative host cell receptor for the Merkel cell polyomavirus. J Virol 83:10275–10279

    Article  PubMed  CAS  Google Scholar 

  • Feng H, Shuda M, Chang Y, Moore PS (2008) Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 319:1096–1100

    Article  PubMed  CAS  Google Scholar 

  • Forster ML, Sivick K, Park YN, Arvan P, Lencer WI, Tsai B (2006) Protein disulfide isomerase-like proteins play opposing roles during retrotranslocation. J Cell Biol 173:853–859

    Article  PubMed  CAS  Google Scholar 

  • Fried H, Cahan LD, Paulson JC (1981) Polyoma virus recognizes specific sialyligosaccharide receptors on host cells. Virology 109:188–192

    Article  PubMed  CAS  Google Scholar 

  • Gardner SD, Field AM, Coleman DV, Hulme B (1971) New human papovavirus (B.K.) isolated from urine after renal transplantation. Lancet 1:1253–1257

    Article  PubMed  CAS  Google Scholar 

  • Gaynor AM, Nissen MD, Whiley DM, Mackay M, Lambert SB, Wu G, Brennan DC, Storch GA, Sloots TP, Wang D (2007) Identification of a novel polyomavirus from patients with acute respiratory tract infections. PLoS Pathog 3:e64

    Article  PubMed  Google Scholar 

  • Gilbert J, Benjamin T (2000) Early steps of polyomavirus entry into cells. J Virol 74:8582–8588

    Article  PubMed  CAS  Google Scholar 

  • Gilbert J, Benjamin T (2004) Uptake pathway of polyomavirus via ganglioside GD1a. J Virol 78:12259–12267

    Article  PubMed  CAS  Google Scholar 

  • Gilbert J, Ou W, Silver J, Benjamin T (2006) Downregulation of protein disulfide isomerase inhibits infection by the mouse polyomavirus. J Virol 80:10868–10870

    Article  PubMed  CAS  Google Scholar 

  • Gross L (1953) A filterable agent, recovered from Ak leukemic extracts, causing salivary gland carcinomas in C3H mice. Proc Soc Exp Biol Med 83:414–421

    PubMed  CAS  Google Scholar 

  • Jiang M, Abend JR, Tsai B, Imperiale MJ (2009) Early events during BK virus entry and disassembly. J Virol 83:1350–1358

    Article  PubMed  CAS  Google Scholar 

  • Kartenbeck J, Stukenbrok H, Helenius A (1989) Endocytosis of simian virus 40 into the endoplasmic reticulum. J Cell Biol 109:2721–2729

    Article  PubMed  CAS  Google Scholar 

  • Komagome R, Sawa H, Suzuki T, Suzuki Y, Tanaka S, Atwood WJ, Nagashima K (2002) Oligosaccharides as receptors for JC virus. J Virol 76:12992–13000

    Article  PubMed  CAS  Google Scholar 

  • Lencer WI, Tsai B (2003) The intracellular voyage of cholera toxin: going retro. Trends Biochem Sci 28:639–645

    Article  PubMed  CAS  Google Scholar 

  • Liddington RC, Yan Y, Moulai J, Sahli R, Benjamin TL, Harrison SC (1991) Structure of simian virus 40 at 3.8-A resolution. Nature 354:278–284

    Article  PubMed  CAS  Google Scholar 

  • Liebel D, Difato F, Hornikova L, Mannova P, Stokrova J, Forstova J (2006) Mouse polyomavirus enters early endosomes, requires their acidic pH for productive infection, and meets transferrin cargo in Rab11-positive endosomes. J Virol 80:4610–4622

    Article  PubMed  CAS  Google Scholar 

  • Lilley BN, Gilbert JM, Ploegh HL, Benjamin TL (2006) Murine polyomavirus requires the endoplasmic reticulum protein Derlin-2 to initiate infection. J Virol 80:8739–8744

    Article  PubMed  CAS  Google Scholar 

  • Low J, Humes HD, Szczypka M, Imperiale M (2004) BKV and SV40 infection of human kidney tubular epithelial cells in vitro. Virology 323:182–188

    Article  PubMed  CAS  Google Scholar 

  • Low JA, Magnuson B, Tsai B, Imperiale MJ (2006) Identification of gangliosides GD1b and GT1b as receptors for BK virus. J Virol 80:1361–1366

    Article  PubMed  CAS  Google Scholar 

  • Magnuson B, Rainey EK, Benjamin T, Baryshev M, Mkrtchian S, Tsai B (2005) ERp29 triggers a conformational change in polyomavirus to stimulate membrane binding. Mol Cell 20:289–300

    Article  PubMed  CAS  Google Scholar 

  • Mannova P, Forstova J (2003) Mouse polyomavirus utilizes recycling endosomes for a traffic pathway independent of COPI vesicle transport. J Virol 77:1672–1681

    Article  PubMed  CAS  Google Scholar 

  • Marsh M, Helenius A (2006) Virus entry: open sesame. Cell 124:729–740

    Article  PubMed  CAS  Google Scholar 

  • Merritt EA, Hol WG (1995) AB5 toxins. Curr Opin Struct Biol 5:165–171

    Article  PubMed  CAS  Google Scholar 

  • Moriyama T, Marquez JP, Wakatsuki T, Sorokin A (2007) Caveolar endocytosis is critical for BK virus infection of human renal proximal tubular epithelial cells. J Virol 81:8552–8562

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi A, Clever J, Yamada M, Li PP, Kasamatsu H (1996) Association with capsid proteins promotes nuclear targeting of simian virus 40 DNA. Proc Natl Acad Sci USA 93:96–100

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi A, Shum D, Morioka H, Otsuka E, Kasamatsu H (2002) Interaction of the Vp3 nuclear localization signal with the importin alpha 2/beta heterodimer directs nuclear entry of infecting simian virus 40. J Virol 76:9368–9377

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi A, Li PP, Qu Q, Jafri QH, Kasamatsu H (2007) Molecular dissection of nuclear entry-competent SV40 during infection. Virus Res 124:226–230

    Article  PubMed  CAS  Google Scholar 

  • Neu U, Woellner K, Gauglitz G, Stehle T (2008) Structural basis of GM1 ganglioside recognition by simian virus 40. Proc Natl Acad Sci USA 105:5219–5224

    Article  PubMed  CAS  Google Scholar 

  • Norkin LC, Anderson HA, Wolfrom SA, Oppenheim A (2002) Caveolar endocytosis of simian virus 40 is followed by brefeldin A-sensitive transport to the endoplasmic reticulum, where the virus disassembles. J Virol 76:5156–5166

    Article  PubMed  CAS  Google Scholar 

  • Padgett BL, Walker DL, ZuRhein GM, Eckroade RJ, Dessel BH (1971) Cultivation of papova-like virus from human brain with progressive multifocal leucoencephalopathy. Lancet 1:1257–1260

    Article  PubMed  CAS  Google Scholar 

  • Pelkmans L, Helenius A (2003) Insider information: what viruses tell us about endocytosis. Curr Opin Cell Biol 15:414–422

    Article  PubMed  CAS  Google Scholar 

  • Pelkmans L, Kartenbeck J, Helenius A (2001) Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 3:473–483

    Article  PubMed  CAS  Google Scholar 

  • Pelkmans L, Puntener D, Helenius A (2002) Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 296:535–539

    Article  PubMed  CAS  Google Scholar 

  • Pelkmans L, Burli T, Zerial M, Helenius A (2004) Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic. Cell 118:767–780

    Article  PubMed  CAS  Google Scholar 

  • Ploegh HL (2007) A lipid-based model for the creation of an escape hatch from the endoplasmic reticulum. Nature 448:435–438

    Article  PubMed  CAS  Google Scholar 

  • Poranen MM, Daugelavicius R, Bamford DH (2002) Common principles in viral entry. Annu Rev Microbiol 56:521–538

    Article  PubMed  CAS  Google Scholar 

  • Qian M, Cai D, Verhey KJ, Tsai B (2009) A lipid receptor sorts polyomavirus from the endolysosome to the endoplasmic reticulum to cause infection. PloS Pathog 5:e1000465

    Article  PubMed  Google Scholar 

  • Qu Q, Sawa H, Suzuki T, Semba S, Henmi C, Okada Y, Tsuda M, Tanaka S, Atwood WJ, Nagashima K (2004) Nuclear entry mechanism of the human polyomavirus JC virus-like particle: role of importins and the nuclear pore complex. J Biol Chem 279:27735–27742

    Article  PubMed  CAS  Google Scholar 

  • Querbes W, O’Hara BA, Williams G, Atwood WJ (2006) Invasion of host cells by JC virus identifies a novel role for caveolae in endosomal sorting of noncaveolar ligands. J Virol 80:9402–9413

    Article  PubMed  CAS  Google Scholar 

  • Rainey-Barger EK, Magnuson B, Tsai B (2007) A chaperone-activated nonenveloped virus perforates the physiologically relevant endoplasmic reticulum membrane. J Virol 81:12996–13004

    Article  PubMed  CAS  Google Scholar 

  • Richards AA, Stang E, Pepperkok R, Parton RG (2002) Inhibitors of COP-mediated transport and cholera toxin action inhibit simian virus 40 infection. Mol Biol Cell 13:1750–1764

    Article  PubMed  CAS  Google Scholar 

  • Richterova Z, Liebl D, Horak M, Palkova Z, Stokrova J, Hozak P, Korb J, Forstova J (2001) Caveolae are involved in the trafficking of mouse polyomavirus virions and artificial VP1 pseudocapsids toward cell nuclei. J Virol 75:10880–10891

    Article  PubMed  CAS  Google Scholar 

  • Romer W, Berland L, Chambon V, Gaus K, Windschiegl B, Tenza D, Aly MR, Fraisier V, Florent JC, Perrais D, Lamaze C, Raposo G, Steinem C, Sens P, Bassereau P, Johannes L (2007) Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature 450:670–675

    Article  PubMed  Google Scholar 

  • Schelhaas M, Malmstrom J, Pelkmans L, Haugstetter J, Ellgaard L, Grunewald K, Helenius A (2007) Simian Virus 40 depends on ER protein folding and quality control factors for entry into host cells. Cell 131:516–529

    Article  PubMed  CAS  Google Scholar 

  • Schwarzmann G (2001) Uptake and metabolism of exogenous glycosphingolipids by cultured cells. Semin Cell Dev Biol 12:163–171

    Article  PubMed  CAS  Google Scholar 

  • Smith AE, Lilie H, Helenius A (2003) Ganglioside-dependent cell attachment and endocytosis of murine polyomavirus-like particles. FEBS Lett 555:199–203

    Article  PubMed  CAS  Google Scholar 

  • Stang E, Kartenbeck J, Parton RG (1997) Major histocompatibility complex class I molecules mediate association of SV40 with caveolae. Mol Biol Cell 8:47–57

    PubMed  CAS  Google Scholar 

  • Stehle T, Yan Y, Benjamin TL, Harrison SC (1994) Structure of murine polyomavirus complexed with an oligosaccharide receptor fragment. Nature 369:160–163

    Article  PubMed  CAS  Google Scholar 

  • Stehle T, Gamblin SJ, Yan Y, Harrison SC (1996) The structure of simian virus 40 refined at 3.1 A resolution. Structure 4:165–182

    Article  PubMed  CAS  Google Scholar 

  • Stewart M (2007) Molecular mechanism of the nuclear protein import cycle. Nat Rev Mol Cell Biol 8:195–208

    Article  PubMed  CAS  Google Scholar 

  • Streuli CH, Griffin BE (1987) Myristic acid is coupled to a structural protein of polyoma virus and SV40. Nature 326:619–622

    Article  PubMed  CAS  Google Scholar 

  • Sweet BH, Hilleman MR (1960) The vacuolating virus, S.V. 40. Proc Soc Exp Biol Med 105:420–427

    PubMed  CAS  Google Scholar 

  • Tsai B (2007) Penetration of nonenveloped viruses into the cytoplasm. Annu Rev Cell Dev Biol 23:23–43

    Article  PubMed  CAS  Google Scholar 

  • Tsai B, Rodighiero C, Lencer WI, Rapoport TA (2001) Protein disulfide isomerase acts as a redox-dependent chaperone to unfold cholera toxin. Cell 104:937–948

    Article  PubMed  CAS  Google Scholar 

  • Tsai B, Ye Y, Rapoport TA (2002) Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nat Rev Mol Cell Biol 3:246–255

    Article  PubMed  CAS  Google Scholar 

  • Tsai B, Gilbert JM, Stehle T, Lencer W, Benjamin TL, Rapoport TA (2003) Gangliosides are receptors for murine polyoma virus and SV40. EMBO J 22:4346–4355

    Article  PubMed  CAS  Google Scholar 

  • Vembar SS, Brodsky JL (2008) One step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol 9:944–957

    Article  PubMed  CAS  Google Scholar 

  • Wolf AA, Jobling MG, Saslowsky DE, Kern E, Drake KR, Kenworthy AK, Holmes RK, Lencer WI (2008) Attenuated endocytosis and toxicity of a mutant cholera toxin with decreased ability to cluster ganglioside GM1 molecules. Infect Immun 76:1476–1484

    Article  PubMed  CAS  Google Scholar 

  • Yamada M, Kasamatsu H (1993) Role of nuclear pore complex in simian virus 40 nuclear targeting. J Virol 67:119–130

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Emily Rainey-Barger and Mike Imperiale for critical review of this manuscript. We apologize for not citing the work of many colleagues due to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Billy Tsai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tsai, B., Qian, M. (2010). Cellular Entry of Polyomaviruses. In: Johnson, J. (eds) Cell Entry by Non-Enveloped Viruses. Current Topics in Microbiology and Immunology, vol 343. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2010_38

Download citation

Publish with us

Policies and ethics