Skip to main content

Genetic Variation in Long-Range Enhancers

  • Chapter
  • First Online:
Behavioral Neurogenomics

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 42))

Abstract

Cis-regulatory elements (CREs), including insulators, promoters, and enhancers, play critical roles in the establishment and maintenance of normal cellular function. Within each cell, the 3D structure of chromatin is arranged in specific patterns to expose the CREs required for optimal spatiotemporal regulation of gene expression. CREs can act over large distances along the linear genome, facilitated by looping of the intervening chromatin to allow direct interaction between distal regulatory elements and their target genes. A number of pathologies are associated with dysregulation of CRE function, including developmental disorders, cancers, and neuropsychiatric disease. A majority of known neuropsychiatric disease risk loci are noncoding, and increasing evidence suggests that they contribute to disease through disruption of CREs. As such, rather than directly altering the amino acid content of proteins, these variants are instead thought to affect where, when, and to what extent a given gene is expressed. The distances over which CREs can operate often render their target genes difficult to identify. Furthermore, as many risk loci contain multiple variants in high linkage disequilibrium, identification of the causative single nucleotide polymorphism(s) therein is not straightforward. Thus, deciphering the genetic etiology of complex neuropsychiatric disorders presents a significant challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addington AM et al (2005) GAD1 (2q31.1), which encodes glutamic acid decarboxylase (GAD67), is associated with childhood-onset schizophrenia and cortical gray matter volume loss. Mol Psychiatry 10:581–588

    Article  CAS  PubMed  Google Scholar 

  • Akbarian S et al (2015) The PsychENCODE project. Nat Neurosci 18:1707–1712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albert FW, Kruglyak L (2015) The role of regulatory variation in complex traits and disease. Nat Rev Genet 16:197–212

    Article  CAS  PubMed  Google Scholar 

  • Andersson R et al (2014) An atlas of active enhancers across human cell types and tissues. Nature 507:455–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold CD et al (2013) Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science 339:1074–1077

    Article  CAS  PubMed  Google Scholar 

  • Banerji J et al (1981) Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences. Cell 27:299–308

    Article  CAS  PubMed  Google Scholar 

  • Banerji J et al (1983) A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes. Cell 33:729–740

    Article  CAS  PubMed  Google Scholar 

  • Benabdallah NS et al (2016) SBE6: a novel long-range enhancer involved in driving sonic hedgehog expression in neural progenitor cells. Open Biol 6:pii: 160197

    Article  CAS  Google Scholar 

  • Benes FM, Berretta S (2001) GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 25:1–27

    Article  CAS  PubMed  Google Scholar 

  • Benko S et al (2009) Highly conserved non-coding elements on either side of SOX9 associated with Pierre Robin sequence. Nat Genet 41:359–364

    Article  CAS  PubMed  Google Scholar 

  • Bernstein BE et al (2010) The NIH Roadmap Epigenomics Mapping Consortium. Nat Biotechnol 28:1045–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernstein HG et al (2015) Glial cells as key players in schizophrenia pathology: recent insights and concepts of therapy. Schizophr Res 161:4–18

    Article  PubMed  Google Scholar 

  • Bharadwaj R et al (2013) Conserved chromosome 2q31 conformations are associated with transcriptional regulation of GAD1 GABA synthesis enzyme and altered in prefrontal cortex of subjects with schizophrenia. J Neurosci Off J Soc Neurosci 33:11839–11851

    Article  CAS  Google Scholar 

  • Bharadwaj R et al (2014) Conserved higher-order chromatin regulates NMDA receptor gene expression and cognition. Neuron 84:997–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buenrostro JD et al (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10:1213–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buenrostro JD et al (2015a) ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol 109:21.29.1–9

    Article  Google Scholar 

  • Buenrostro JD et al (2015b) Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523:486–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulger M, Groudine M (2010) Enhancers: the abundance and function of regulatory sequences beyond promoters. Dev Biol 339:250–257

    Article  CAS  PubMed  Google Scholar 

  • Cattoni DI et al (2015) A matter of scale: how emerging technologies are redefining our view of chromosome architecture. Trends Genet 31:454–464

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Ahituv N (2017) Gene regulatory elements, major drivers of human disease. Annu Rev Genomics Hum Genet 18:45–63

    Article  CAS  PubMed  Google Scholar 

  • Cheung I et al (2010) Developmental regulation and individual differences of neuronal H3K4me3 epigenomes in the prefrontal cortex. Proc Natl Acad Sci U S A 107:8824–8829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ENCODE Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74

    Google Scholar 

  • FANTOM Consortium (2014) A promoter-level mammalian expression atlas. Nature 507:462–470

    Google Scholar 

  • Corces MR et al (2017) An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat Methods 14:959–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301

    Article  CAS  PubMed  Google Scholar 

  • Cremer T et al (1982) Analysis of chromosome positions in the interphase nucleus of Chinese hamster cells by laser-UV-microirradiation experiments. Hum Genet 62:201–209

    Article  CAS  PubMed  Google Scholar 

  • Dailey L (2015) High throughput technologies for the functional discovery of mammalian enhancers: new approaches for understanding transcriptional regulatory network dynamics. Genomics 106:151–158

    Article  CAS  PubMed  Google Scholar 

  • Dao LTM et al (2017) Genome-wide characterization of mammalian promoters with distal enhancer functions. Nat Genet 49:1073–1081

    Article  CAS  PubMed  Google Scholar 

  • Deardorff MA et al (2012) HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle. Nature 489:313–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dekker J, Mirny L (2016) The 3D genome as moderator of chromosomal communication. Cell 164:1110–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dekker J et al (2002) Capturing chromosome conformation. Science 295:1306–1311

    Article  CAS  PubMed  Google Scholar 

  • Dekker J et al (2013) Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat Rev Genet 14:390–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon JR et al (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon JR et al (2016) Chromatin domains: the unit of chromosome organization. Mol Cell 62:668–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dostie J et al (2006) Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res 16:1299–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egervari G et al (2017) Striatal H3K27 acetylation linked to glutamatergic gene dysregulation in human heroin abusers holds promise as therapeutic target. Biol Psychiatry 81:585–594

    Article  CAS  PubMed  Google Scholar 

  • Epstein DJ (2009) Cis-regulatory mutations in human disease. Brief Funct Genomic Proteomic 8:310–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flyamer IM et al (2017) Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature 544:110–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fromer M et al (2016) Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat Neurosci. https://doi.org/10.1038/nn.4399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fullard JF et al (2017) Open chromatin profiling of human postmortem brain infers functional roles for non-coding schizophrenia loci. Hum Mol Genet 26:1942–1951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fullwood MJ, Ruan Y (2009) ChIP-based methods for the identification of long-range chromatin interactions. J Cell Biochem 107:30–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fullwood MJ et al (2009) An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 462:58–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gandal MJ et al (2016) The road to precision psychiatry: translating genetics into disease mechanisms. Nat Neurosci 19:1397–1407

    Article  CAS  PubMed  Google Scholar 

  • Gaszner M, Felsenfeld G (2006) Insulators: exploiting transcriptional and epigenetic mechanisms. Nat Rev Genet 7:703–713

    Article  CAS  PubMed  Google Scholar 

  • Gervasini C et al (2013) Molecular characterization of a mosaic NIPBL deletion in a Cornelia de Lange patient with severe phenotype. Eur J Med Genet 56:138–143

    Article  PubMed  Google Scholar 

  • Gordon CT et al (2009) Long-range regulation at the SOX9 locus in development and disease. J Med Genet 46:649–656

    Article  CAS  PubMed  Google Scholar 

  • Goring HH et al (2007) Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nat Genet 39:1208–1216

    Article  PubMed  CAS  Google Scholar 

  • Gusev A et al (2014) Partitioning heritability of regulatory and cell-type-specific variants across 11 common diseases. Am J Hum Genet 95:535–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habermann FA et al (2001) Arrangements of macro- and microchromosomes in chicken cells. Chromosome Res 9:569–584

    Article  CAS  PubMed  Google Scholar 

  • Haroutunian V et al (2014) Myelination, oligodendrocytes, and serious mental illness. Glia 62:1856–1877

    Article  CAS  PubMed  Google Scholar 

  • Hauberg ME et al (2017) Large-scale identification of common trait and disease variants affecting gene expression. Am J Hum Genet 100:885–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauberg ME et al (2018) Differential activity of transcribed enhancers in the prefrontal cortex of 537 cases with schizophrenia and controls. Mol Psychiatry. https://doi.org/10.1038/s41380-018-0059-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He H et al (2015) Multiple functional variants in long-range enhancer elements contribute to the risk of SNP rs965513 in thyroid cancer. Proc Natl Acad Sci U S A 112:6128–6133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heintzman ND et al (2009) Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459:108–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinz S et al (2015) The selection and function of cell type-specific enhancers. Nat Rev Mol Cell Biol 16:144–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henikoff S (2008) Nucleosome destabilization in the epigenetic regulation of gene expression. Nat Rev Genet 9:15–26

    Article  CAS  PubMed  Google Scholar 

  • Herz HM et al (2014) Enhancer malfunction in cancer. Mol Cell 53:859–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jager R et al (2015) Capture Hi-C identifies the chromatin interactome of colorectal cancer risk loci. Nat Commun 6:6178

    Article  CAS  PubMed  Google Scholar 

  • John S et al (2011) Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nat Genet 43:264–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kagey MH et al (2010) Mediator and cohesin connect gene expression and chromatin architecture. Nature 467:430–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khurana E et al (2016) Role of non-coding sequence variants in cancer. Nat Rev Genet 17:93–108

    Article  CAS  PubMed  Google Scholar 

  • Lake BB et al (2018) Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat Biotechnol 36:70–80

    Article  CAS  PubMed  Google Scholar 

  • Lambert JC et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45:1452–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Libioulle C et al (2007) Novel Crohn disease locus identified by genome-wide association maps to a gene desert on 5p13.1 and modulates expression of PTGER4. PLoS Genet 3:e58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lieberman-Aiden E et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin CY et al (2016) Active medulloblastoma enhancers reveal subgroup-specific cellular origins. Nature 530:57–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lupianez DG et al (2015) Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161:1012–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lupianez DG et al (2016) Breaking TADs: how alterations of chromatin domains result in disease. Trends Genet 32:225–237

    Article  CAS  PubMed  Google Scholar 

  • Manolio TA et al (2008) A HapMap harvest of insights into the genetics of common disease. J Clin Invest 118:1590–1605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manolio TA et al (2009) Finding the missing heritability of complex diseases. Nature 461:747–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurano MT et al (2012) Systematic localization of common disease-associated variation in regulatory DNA. Science 337:1190–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCullumsmith RE et al (2015) Cell-specific abnormalities of glutamate transporters in schizophrenia: sick astrocytes and compensating relay neurons? Mol Psychiatry. https://doi.org/10.1038/mp.2015.148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meaburn KJ, Misteli T (2007) Cell biology: chromosome territories. Nature 445:379–781

    Article  CAS  PubMed  Google Scholar 

  • Mellor J (2005) The dynamics of chromatin remodeling at promoters. Mol Cell 19:147–157

    Article  CAS  PubMed  Google Scholar 

  • Mighdoll MI et al (2015) Myelin, myelin-related disorders, and psychosis. Schizophr Res 161:85–93

    Article  PubMed  Google Scholar 

  • Mirabella AC et al (2015) Chromatin deregulation in disease. Chromosoma. https://doi.org/10.1007/s00412-015-0530-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mitchell AC et al (2014) The genome in three dimensions: a new frontier in human brain research. Biol Psychiatry 75:961–969

    Article  CAS  PubMed  Google Scholar 

  • Moffatt MF et al (2007) Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 448:470–473

    Article  CAS  PubMed  Google Scholar 

  • Muerdter F et al (2015) STARR-seq - principles and applications. Genomics. https://doi.org/10.1016/j.ygeno.2015.06.001

    Article  CAS  PubMed  Google Scholar 

  • Murtha M et al (2014) FIREWACh: high-throughput functional detection of transcriptional regulatory modules in mammalian cells. Nat Methods 11:559–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naumova N et al (2012) Analysis of long-range chromatin interactions using chromosome conformation capture. Methods 58:192–203

    Article  CAS  PubMed  Google Scholar 

  • Nora EP et al (2012) Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485:381–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Northcott PA et al (2014) Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. Nature 511:428–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parada LA et al (2002) Conservation of relative chromosome positioning in normal and cancer cells. Curr Biol 12:1692–1697

    Article  CAS  PubMed  Google Scholar 

  • Parada LA et al (2004) Tissue-specific spatial organization of genomes. Genome Biol 5:R44

    Article  PubMed  PubMed Central  Google Scholar 

  • Parker SC et al (2013) Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants. Proc Natl Acad Sci U S A 110:17921–17926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Postma AV et al (2016) Genetics of congenital heart disease: the contribution of the noncoding regulatory genome. J Hum Genet 61:13–19

    Article  CAS  PubMed  Google Scholar 

  • Rabl C (1885) Uber Zelltheilung. In: Gegenbaur C (ed) Morphologisches Jahrbuch, vol 10, pp 214–330

    Google Scholar 

  • Rao SS et al (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:1665–1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roadmap Epigenomics C et al (2015) Integrative analysis of 111 reference human epigenomes. Nature 518:317–330

    Article  CAS  Google Scholar 

  • Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6:597–610

    Article  CAS  PubMed  Google Scholar 

  • Romanoski CE et al (2015) Exploiting genomics and natural genetic variation to decode macrophage enhancers. Trends Immunol 36:507–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roussos P, Haroutunian V (2014) Schizophrenia: susceptibility genes and oligodendroglial and myelin related abnormalities. Front Cell Neurosci 8:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roussos P et al (2014) A role for noncoding variation in schizophrenia. Cell Rep 9:1417–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanyal A et al (2011) Chromatin globules: a common motif of higher order chromosome structure? Curr Opin Cell Biol 23:325–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanyal A et al (2012) The long-range interaction landscape of gene promoters. Nature 489:109–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scacheri CA, Scacheri PC (2015) Mutations in the noncoding genome. Curr Opin Pediatr 27:659–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schizophrenia Working Group of the Psychiatric Genomics C (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511:421–427

    Article  CAS  Google Scholar 

  • Schnieder TP, Dwork AJ (2011) Searching for neuropathology: gliosis in schizophrenia. Biol Psychiatry 69:134–139

    Article  PubMed  Google Scholar 

  • Scott LJ et al (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316:1341–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen E et al (2014) Regulation of histone H3K4 methylation in brain development and disease. Philos Trans R Soc Lond Ser B Biol Sci 369:20130514

    Article  CAS  Google Scholar 

  • Shiraki T et al (2003) Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc Natl Acad Sci U S A 100:15776–15781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shlyueva D et al (2014) Transcriptional enhancers: from properties to genome-wide predictions. Nat Rev Genet 15:272–286

    Article  CAS  PubMed  Google Scholar 

  • Simon JM et al (2012) Using formaldehyde-assisted isolation of regulatory elements (FAIRE) to isolate active regulatory DNA. Nat Protoc 7:256–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simonis M et al (2007) An evaluation of 3C-based methods to capture DNA interactions. Nat Methods 4:895–901

    Article  CAS  PubMed  Google Scholar 

  • Song L et al (2011) Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity. Genome Res 21:1757–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spielmann M, Klopocki E (2013) CNVs of noncoding cis-regulatory elements in human disease. Curr Opin Genet Dev 23:249–256

    Article  CAS  PubMed  Google Scholar 

  • Spielmann M, Mundlos S (2013) Structural variations, the regulatory landscape of the genome and their alteration in human disease. Bioessays 35:533–543

    Article  CAS  PubMed  Google Scholar 

  • Spilianakis CG et al (2005) Interchromosomal associations between alternatively expressed loci. Nature 435:637–645

    Article  CAS  PubMed  Google Scholar 

  • Stahl E et al (2018) Genomewide association study identifies 30 loci associated with bipolar disorder. bioRxiv. https://doi.org/10.1101/173062

  • Straub RE et al (2007) Allelic variation in GAD1 (GAD67) is associated with schizophrenia and influences cortical function and gene expression. Mol Psychiatry 12:854–869

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H et al (2012) 5′ end-centered expression profiling using cap-analysis gene expression and next-generation sequencing. Nat Protoc 7:542–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanabe H et al (2002) Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates. Proc Natl Acad Sci U S A 99:4424–4429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tansey KE, Hill MJ (2018) Enrichment of schizophrenia heritability in both neuronal and glia cell regulatory elements. Transl Psychiatry 8:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tansey KE et al (2018) Genetic risk for Alzheimer’s disease is concentrated in specific macrophage and microglial transcriptional networks. Genome Med 10:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trynka G et al (2013) Chromatin marks identify critical cell types for fine mapping complex trait variants. Nat Genet 45:124–130

    Article  CAS  PubMed  Google Scholar 

  • Ulianov SV et al (2017) Single-cell Hi-C bridges microscopy and genome-wide sequencing approaches to study 3D chromatin organization. Bioessays 39:1700104

    Article  CAS  Google Scholar 

  • Vanhille L et al (2015) High-throughput and quantitative assessment of enhancer activity in mammals by CapStarr-seq. Nat Commun 6:6905

    Article  CAS  PubMed  Google Scholar 

  • Vernimmen D, Bickmore WA (2015) The hierarchy of transcriptional activation: from enhancer to promoter. Trends Genet 31:696–708

    Article  CAS  PubMed  Google Scholar 

  • Ward LD, Kellis M (2012) Interpreting noncoding genetic variation in complex traits and human disease. Nat Biotechnol 30:1095–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williamson I et al (2011) Enhancers: from developmental genetics to the genetics of common human disease. Dev Cell 21:17–19

    Article  CAS  PubMed  Google Scholar 

  • Won H et al (2016) Chromosome conformation elucidates regulatory relationships in developing human brain. Nature 538:523–527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wray NR et al (2018) Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat Genet 50:668–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X et al (2018) Local and global chromatin interactions are altered by large genomic deletions associated with human brain development. bioRxiv. https://doi.org/10.1101/182451

  • Zhao Z et al (2006) Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet 38:1341–1347

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panos Roussos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fullard, J.F., Rahman, S., Roussos, P. (2019). Genetic Variation in Long-Range Enhancers. In: Binder, E., Klengel, T. (eds) Behavioral Neurogenomics. Current Topics in Behavioral Neurosciences, vol 42. Springer, Cham. https://doi.org/10.1007/7854_2019_110

Download citation

Publish with us

Policies and ethics