Skip to main content

Translational Value of Drug Discrimination with Typical and Atypical Antipsychotic Drugs

  • Chapter
  • First Online:
The Behavioral Neuroscience of Drug Discrimination

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 39))

Abstract

This chapter focuses on the translational value of drug discrimination as a preclinical assay for drug development. In particular, the importance of two factors, i.e., training dose and species, for drug discrimination studies with the atypical antipsychotic clozapine is examined. Serotonin receptors appear to be an important pharmacological mechanism mediating clozapine’s discriminative cue in both rats and mice, although differences are clearly evident as antagonism of cholinergic muscarinic receptors is important in rats at a higher training dose (5.0 mg/kg) of clozapine, but not at a lower training dose (1.25 mg/kg). Antagonism of α1 adrenoceptors is a sufficient mechanism in C57BL/6 and 129S2 mice to mimic clozapine’s cue, but not in DBA/2 and B6129S mice, and only produces partial substitution in low-dose clozapine discrimination in rats. Dopamine antagonism produces partial substitution for clozapine in DBA/2, 129S2, and B6129S mice, but not in C57BL/6 mice, and partial substitution is seen with D4 antagonism in low-dose clozapine drug discrimination in rats. Thus, it is evident that clozapine has a complex mixture of receptor contributions towards its discriminative cue based on the data from the four mouse strains that have been tested that is similar to the results from rat studies. A further examination of antipsychotic stimulus properties in humans, particularly in patients with schizophrenia, would go far in evaluating the translational value of the drug discrimination paradigm for antipsychotic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ban T (2007) Fifty years chlorpromazine: a historical perspective. Neuropsychiatr Dis Treat 3(4):495–500

    CAS  PubMed  Google Scholar 

  2. van Rossum JM (1966) The significance of dopamine receptor blockade for the action of neuroleptic drugs. In: Brill H (ed) Neuro-psycho-pharmacology. Excerpta Medica Foundation, Amsterdam, pp 321–329

    Google Scholar 

  3. Baumeister AA, Francis JL (2002) Historical development of the dopamine hypothesis of schizophrenia. J Hist Neurosci 11(3):265–277

    PubMed  Google Scholar 

  4. Snyder SH, Banerjee SP, Yamamura HI et al (1974) Drugs, neurotransmitters and schizophrenia. Science 184:1243–1253

    CAS  PubMed  Google Scholar 

  5. Shorter E (1997) A history of psychiatry. Wiley, New York, NY, p 208

    Google Scholar 

  6. Hippius (1999) A historical perspective of clozapine. J Clin Psychiatry 60(Suppl 12):22–23

    PubMed  Google Scholar 

  7. Young CR, Longhurst JG, Bowers MB Jr, Mazure CM (1997) The expanding indications for clozapine. Exp Clin Psychopharmacol 5:216–234

    CAS  PubMed  Google Scholar 

  8. Meltzer HY, Matsubara S, Lee JC (1989) Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and serotonin2 pKi values. J Pharmacol Exp Ther 251:238–246

    CAS  PubMed  Google Scholar 

  9. Idänpään-Heikkilä J, Alhava E, Olkinuora M et al (1975) Clozapine and agranulocytosis. Lancet 2:611

    PubMed  Google Scholar 

  10. Crossley NA (2010) Efficacy of atypical v. typical antipsychotics in the treatment of early psychosis: meta-analysis. Br J Psychiatry 196:434–439

    PubMed  Google Scholar 

  11. Dekeyne A, Millan MJ (2003) Discriminative stimulus properties of antidepressant agents: a review. Behav Pharmacol 14:391–407

    CAS  PubMed  Google Scholar 

  12. Goudie AJ, Smith JA (1999) Discriminative stimulus properties of antipsychotics. Pharmacol Biochem Behav 64(2):193–201

    CAS  PubMed  Google Scholar 

  13. Porter JH, Prus AJ (2009) Discriminative stimulus properties of atypical and typical antipsychotic drugs: a review of preclinical studies. Psychopharmacology (Berl) 203:279–294

    CAS  PubMed  Google Scholar 

  14. Fang FC, Casaderall A (2010) Editorial: lost in translation – basic science in the era of translational research. Infect Immun 78(2):563–566

    CAS  PubMed  Google Scholar 

  15. Stewart J (1962) Differential responses based on the physiological consequences of pharmacological agents. Psychopharmacologia 3:132–138

    CAS  PubMed  Google Scholar 

  16. Barry H III, Steenberg ML, Manian AA, Buckley JP (1974) Effects of chlorpromazine and three metabolites on behavioral responses in rats. Psychopharmacology (Berl) 34:351–360

    CAS  Google Scholar 

  17. Goas JA, Boston JE Jr (1978) Discriminative stimulus properties of clozapine and chlorpromazine. Pharmacol Biochem Behav 8:235–241

    CAS  PubMed  Google Scholar 

  18. Porter JH, Covington HE III, Varvel SA, Vann RE, Warren TA (1998) Chlorpromazine as a discriminative stimulus in rats: generalization to typical and atypical antipsychotic. Drug Dev Res 48:38–44

    Google Scholar 

  19. Porter JH, Prus AJ, Vann RE, Varvel SA (2005) Discriminative stimulus properties of the atypical antipsychotic clozapine and the typical antipsychotic chlorpromazine in a three-choice drug discrimination procedure in rats. Psychopharmacology (Berl) 178:67–77

    CAS  PubMed  Google Scholar 

  20. Arnt J, Skarsfeldt T (1998) Do novel antipsychotics have similar pharmacological characteristics? A review of the evidence. Neuropsychopharmacology 18:63–101

    CAS  PubMed  Google Scholar 

  21. Bymaster FP, Calligaro DO, Falcone JF, Marsh RD, Moore NA, Tye NC, Seeman P, Wong DT (1996) Radioreceptor binding profile of the atypical antipsychotic olanzapine. Neuropsychopharmacology 14:87–96

    CAS  PubMed  Google Scholar 

  22. Richelson E (1999) Receptor pharmacology of neuroleptics: relation to clinical effects. J Clin Psychiatry 60(Suppl 10):5–14

    CAS  PubMed  Google Scholar 

  23. Schotte A, Janssen PF, Gommeren W, Luyten WH, Van Gompel P, Lesage AS, De Loore K, Leysen JE (1996) Risperidone compared with new and reference antipsychotic drugs: in vitro and in vivo receptor binding. Psychopharmacology (Berl) 124:57–73

    CAS  PubMed  Google Scholar 

  24. Colpaert FC, Niemegeers CJE, Janssen PAJ (1976) Theoretical and methodological considerations on drug discrimination learning. Psychopharmacology (Berl) 46:169–177

    CAS  Google Scholar 

  25. McElroy JF, Stimmel JJ, O’Donnell JM (1989) Discriminative stimulus properties of haloperidol. Drug Dev Res 18:47–55

    CAS  Google Scholar 

  26. Haenlein M, Caul WF, Barrett RJ (1985) Amphetamine-haloperidol discrimination: effects of chronic drug treatment. Pharmacol Biochem Behav 23:949–952

    CAS  PubMed  Google Scholar 

  27. Wiley JL, Porter JH (1993) Effects of serotonergic drugs in rats trained to discriminate clozapine from haloperidol. Bull Psychonomic Soc 31:94–96

    CAS  Google Scholar 

  28. Barrett RJ, Caul WF, Smith R (2005) Withdrawal, tolerance, and sensitization to dopamine mediated interoceptive cues in rats trained on a three-lever drug-discrimination task. Pharmacol Biochem Behav 81(1):1–8

    CAS  PubMed  Google Scholar 

  29. Stadler JR, Caul WF, Barrett RJ (1999) Characterizing withdrawal in rats following repeated drug administration using an amphetamine-vehicle-haloperidol drug discrimination. Psychopharmacology (Berl) 143:219–226

    CAS  PubMed  Google Scholar 

  30. Franklin SR, Tang AH (1994) Discriminative stimulus effects of clozapine in rats. Behav Pharmacol 5:113

    CAS  Google Scholar 

  31. Goudie AJ, Smith JA, Taylor A, Taylor MA, Tricklebank MD (1998) Discriminative stimulus properties of the atypical neuroleptic clozapine in rats: tests with subtype selective receptor ligands. Behav Pharmacol 9(8):699–710

    CAS  PubMed  Google Scholar 

  32. Kelley BM, Porter JH (1997) The role of muscarinic cholinergic receptors in the discriminative stimulus properties of clozapine in rats. Pharmacol Biochem Behav 57(4):707–719

    CAS  PubMed  Google Scholar 

  33. Nielsen EB (1988) Cholinergic mediation of the discriminative stimulus properties of clozapine. Psychopharmacology (Berl) 94:115–118

    CAS  PubMed  Google Scholar 

  34. Hoenicke EM, Vanecek SA, Woods JH (1992) The discriminative stimulus effects of clozapine in pigeons: involvement of 5-hydroxytryptamine-1c and 5-hydroxytryptamine-2 receptors. J Pharmacol Exp Ther 263:276–284

    CAS  PubMed  Google Scholar 

  35. Philibin SD, Prus AJ, Pehrson AL, Porter JH (2005) Serotonin receptor mechanisms mediate the discriminative stimulus properties of the atypical antipsychotic clozapine in C57BL/6 mice. Psychopharmacology (Berl) 180:49–56

    CAS  PubMed  Google Scholar 

  36. Goudie AJ, Taylor A (1998) Olanzapine generalisation to the clozapine discriminative stimulus is determined by clozapine training dose. Br J Pharmacol 124S:54

    Google Scholar 

  37. Goudie AJ, Taylor MAI, Smith JA (1998) Stimulus properties of clozapine and related agents in rats at two clozapine training doses. J Psychopharmacol 12:A65

    Google Scholar 

  38. Porter JH, Varvel SA, Vann RE, Philibin SD, Wise LE (2000) Clozapine discrimination with a low training dose distinguishes atypical from typical antipsychotic drugs in rats. Psychopharmacology (Berl) 149(2):189–193

    CAS  PubMed  Google Scholar 

  39. Goudie AJ, Taylor A (1998) Comparative characterisation of the discriminative stimulus properties of clozapine and other antipsychotics in rats. Psychopharmacology (Berl) 135:392–400

    CAS  PubMed  Google Scholar 

  40. Geyer M, Ellenbroek B (2003) Animal behavior models of the mechanisms underlying antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry 27:1071–1079

    CAS  PubMed  Google Scholar 

  41. Moore NA, Tye NC, Axton MS, Risius FC (1992) The behavioral pharmacology of olanzapine, a novel “atypical” antipsychotic agent. J Pharmacol Exp Ther 262:545–551

    CAS  PubMed  Google Scholar 

  42. Lieberman JA, Bymaster FP, Meltzer HY, Deutch AY, Duncan GE, Marx CE, Aprille JR, Dwyer DS, Li X-M, Mahadik SP, Duman RS, Porter JH, Modica-Napolitano JS, Newton SS, Csernansky JG (2008) Antipsychotic drugs: comparison in animal models of efficacy, neurotransmitter regulation, and neuroprotection. Pharmacol Rev 60:358–403

    CAS  PubMed  Google Scholar 

  43. Stolerman IP, Childs E, Ford MM, Grant KA (2011) Role of training dose in drug discrimination: a review. Behav Pharmacol 22:414–429

    Google Scholar 

  44. Shannon HE, Holtzman SG (1979) Morphine training dose: a determinant of stimulus generalization to narcotic antagonists in the rat. Psychopharmacology (Berl) 61:239–244

    CAS  PubMed  Google Scholar 

  45. Prus AJ, Philibin S, Pehrson AL, Porter JH (2005) Generalization to atypical antipsychotic drugs depends on training dose in rats trained to discriminate 1.25 mg/kg clozapine versus 5.0 mg/kg clozapine versus vehicle in a three-choice drug discrimination task. Behav Pharmacol 16(7):511–520

    CAS  PubMed  Google Scholar 

  46. Prus AJ, Philibin SD, Pehrson AL, Porter JH (2006) Discriminative stimulus properties of the atypical antipsychotic drug clozapine in rats trained to discriminate 1.25 mg/kg clozapine vs. 5.0 mg/kg clozapine vs. vehicle. Behav Pharmacol 17(2):185–194

    CAS  PubMed  Google Scholar 

  47. Prus AJ, Baker LE, Meltzer HY (2004) Discriminative stimulus properties of 1.25 and 5.0 mg/kg doses of clozapine in rats: examination of therole of dopamine, serotonin, and muscarinic receptor mechanisms. Pharmacol Biochem Behav 77(2):199–208

    CAS  PubMed  Google Scholar 

  48. Prus AJ, Wise LE, Pehrson AL, Philibin SD, Bang-Andersen B, Arnt J, Porter JH (2016) Discriminative stimulus properties of 1.25 mg/kg clozapine in rats: mediation by serotonin 5-HT 2 and dopamine D 4 receptors. Brain Res 1648:298–305

    CAS  PubMed  Google Scholar 

  49. Carey GJ, Bergman J (1997) Discriminative-stimulus effects of clozapine in squirrel monkeys: comparison with conventional and novel antipsychotic drugs. Psychopharmacology (Berl) 132:261–269

    CAS  PubMed  Google Scholar 

  50. Philibin SD, Walentiny DM, Vunck SA, Prus AJ, Meltzer HY, Porter JH (2009) Further characterization of the discriminative stimulus properties of the atypical antipsychotic drug clozapine in C57BL/6 mice and a comparison to clozapine’s major metabolite N-desmethylclozapine. Psychopharmacology (Berl) 203:303–315

    CAS  PubMed  Google Scholar 

  51. Porter JH, Walentiny DM, Philibin SC, Vunck SA, Crabbe JC (2008) A comparison of the discriminative stimulus properties of the atypical antipsychotic drug clozapine in DBA/2 and C57BL/6 inbred mice. Behav Pharmacol 19:530–542

    CAS  PubMed  Google Scholar 

  52. Vunck SA, Wiebelhaus JM, Arnt J, Porter JH (2011) Clozapine and N-methyl-D-aspartate have positive modulatory actions on their respective discriminative stimulus properties in C57BL/6 mice. Eur J Pharmacol 650:579–585

    CAS  PubMed  Google Scholar 

  53. Wiebelhaus JM, Webster KA, Meltzer HY, Porter JH (2011) The metabolites N-desmethylclozapine and N-desmethylolanzapine produce cross-tolerance to the discriminative stimulus of the atypical antipsychotic clozapine in C57BL/6 mice. Behav Pharmacol 22:458–467

    CAS  PubMed  Google Scholar 

  54. Farrell MS, McCorvy JD, Huang X-P, Urban DJ, White KL, Giguere PM, Doak AK, Bernstein AI, Stout KA, Park SM, Rodriguiz RM, Gray BW, Hyatt WS, Norwood AP, Webster KA, Gannon BM, Miller GW, Porter JH, Shoichet BK, Fantegrossi WE, Wetsel WC, Roth BL (2016) In vitro and in vivo characterization of the alkaloid nuciferine. PLoS One 11(3):1–27

    Google Scholar 

  55. Webster K, Brimmer G, Vunck SA, Wiebelhaus JM, Porter JH (2009) The discriminative stimulus properties of the atypical antipsychotic drug clozapine in 129S2 mice. Program no. 840.11. 2009 neuroscience meeting planner. Society for Neuroscience, Washington, DC

    Google Scholar 

  56. Webster KA, Almond LM, Porter JH (2010) Further characterization of the discriminative stimulus properties of the atypical antipsychotic drug clozapine in 129S2/SvHsd mice. Program no. 767.25. 2010 neuroscience meeting planner. Society for Neuroscience, Washington, DC

    Google Scholar 

  57. Porter JH, Webster KA, Philibin SD, Walentiny DM, Vunck SA (2011) Phenotype differences in clozapine’s discriminative stimulus in C57BL/6, DBA/2, and 129S2 inbred mouse strains. Poster presented at the meeting of the European Behavioural Pharmacology Society in Amsterdam, Netherlands, August, 2011

    Google Scholar 

  58. Rush CR, Stoops WW, Hays LR, Glaser PEA, Hays LS (2003) Risperidone attenuates the discriminative-stimulus effects of d-amphetamine in humans. J Pharmacol Exp Ther 306:195–204

    CAS  PubMed  Google Scholar 

  59. Lile JA, Stoops WW, Glaser PE, Hays LR, Rush CR (2011) Discriminative stimulus, subject-rated and cardiovascular effects of cocaine alone and in combination with aripiprazole in humans. J Psychopharmacol 25:1469–1479

    CAS  PubMed  Google Scholar 

  60. Moncrieff J, Cohen D, Mason JP (2009) The subjective experience of taking antipsychotic medication: a content analysis of Internet data. Acta Psychiatr Scand 120(2):102–111

    CAS  PubMed  Google Scholar 

  61. Gerlach J, Larsen EB (1999) Subjective experience and mental side-effects of antipsychotic treatment. Acta Psychiatr Scand 99:113–117

    Google Scholar 

  62. Mizrahi R, Rusjan P, Agid O, Graff A, Mamo DC, Zipursky RB et al (2007) Adverse subjective experience with antipsychotics and its relationship to striatal and extrastriatal D2 receptors: a PET study in schizophrenia. Am J Psychiatry 164:630–637

    PubMed  Google Scholar 

  63. Bymaster FP, Felder CC, Tzavara E, Nomikos GG, Calligaro DO, McKinzie DL (2003) Muscarinic mechanisms of antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry 27:1125–1143

    CAS  PubMed  Google Scholar 

  64. Weston-Green K, Huang X-F, Lian J, Deng C (2012) Effects of olanzapine on muscarinic M3 receptor binding density in the brain relates to weight gain, plasma insulin and metabolic hormone levels. Eur Neuropsychopharmacol 22:364–373

    CAS  PubMed  Google Scholar 

  65. Crawley JN, Belknap JK, Collins A, Crabbe JC, Frankel W, Henderson N et al (1997) Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology (Berl) 132:107–124

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph H. Porter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Porter, J.H., Webster, K.A., Prus, A.J. (2017). Translational Value of Drug Discrimination with Typical and Atypical Antipsychotic Drugs. In: Porter, J.H., Prus, A.J. (eds) The Behavioral Neuroscience of Drug Discrimination. Current Topics in Behavioral Neurosciences, vol 39. Springer, Cham. https://doi.org/10.1007/7854_2017_4

Download citation

Publish with us

Policies and ethics