Skip to main content

Attention and the Cholinergic System: Relevance to Schizophrenia

  • Chapter
Translational Neuropsychopharmacology

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 28))

Abstract

Traditional methods of drug discovery often rely on a unidirectional, “bottom-up” approach: A search for molecular compounds that target a particular neurobiological substrate (e.g., a receptor type), the refinement of those compounds, testing in animal models using high-throughput behavioral screening methods, and then human testing for safety and effectiveness. Many attempts have found the “effectiveness” criterion to be a major stumbling block, and we and others have suggested that success may be improved by an alternative approach that considers the neural circuits mediating the effects of genetic and molecular manipulations on behavior and cognition. We describe our efforts to understand the cholinergic system’s role in attention using parallel approaches to test main hypotheses in both rodents and humans as well as generating converging evidence using methods and levels of analysis tailored to each species. The close back-and-forth between these methods has enhanced our understanding of the cholinergic system’s role in attention both “bottom-up” and “top-down”—that is, the basic neuroscience identifies potential neuronal circuit-based mechanisms of clinical symptoms, and the patient and genetic populations serve as natural experiments to test and refine hypotheses about its contribution to specific processes. Together, these studies have identified (at least) two major and potentially independent contributions of the cholinergic system to attention: a neuromodulatory component that influences cognitive control in response to challenges from distractors that either make detection more difficult or draw attention away from the distractor, and a phasic or transient cholinergic signal that instigates a shift from ongoing behavior and the activation of cue-associated response. Right prefrontal cortex appears to play a particularly important role in the neuromodulatory component integrating motivational and cognitive influences for top-down control across populations, whereas the transient cholinergic signal involves orbitofrontal regions associated with shifts between internal and external attention. Understanding how these two modes of cholinergic function interact and are perturbed in schizophrenia will be an important prerequisite for developing effective treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akitsuki Y, Sugiura M, Watanabe J, Yamashita K, Sassa Y, Awata S, Kawashima R (2003) Context-dependent cortical activation in response to financial reward and penalty: an event-related fMRI study. Neuroimage 19(4):1674–1685. doi:10.1016/s1053-8119(03)00250-7

    Article  PubMed  Google Scholar 

  • Alexander MP, Stuss DT, Shallice T, Picton TW, Gillingham S (2005) Impaired concentration due to frontal lobe damage from two distinct lesion sites. Neurology 65(4):572–579. doi:10.1212/01.wnl.0000172912.07640.92

    Article  CAS  PubMed  Google Scholar 

  • Apostol G, Abi-Saab W, Kratochvil CJ, Adler LA, Robieson WZ, Gault LM, Saltarelli MD (2012) Efficacy and safety of the novel alpha(4)beta(2) neuronal nicotinic receptor partial agonist ABT-089 in adults with attention-deficit/hyperactivity disorder: a randomized, double-blind, placebo-controlled crossover study. Psychopharmacology 219(3):715–725. doi:10.1007/s00213-011-2393-2

    Article  CAS  PubMed  Google Scholar 

  • Apparsundaram S, Martinez V, Parikh V, Kozak R, Sarter M (2005) Increased capacity and density of choline transporters situated in synaptic membranes of the right medial prefrontal cortex of attentional task-performing rats. J Neurosci 25(15):3851–3856. doi:10.1523/jinneurosci.0505.-05.2005

    Article  CAS  PubMed  Google Scholar 

  • Bain EE, Robieson W, Pritchett Y, Garimella T, Abi-Saab W, Apostol G, Saltarelli MD (2013) A randomized, double-blind, placebo-controlled phase 2 study of alpha 4 beta 2 agonist ABT-894 in adults with ADHD. Neuropsychopharmacology 38(3):405–413. doi:10.1038/npp.2012.194

    Article  CAS  PubMed  Google Scholar 

  • Barch DM, Dowd EC (2010) Goal representations and motivational drive in schizophrenia: the role of prefrontal-striatal interactions. Schizophr Bull 36(5):919–934. doi:10.1093/schbul/sbq068

    Article  PubMed  PubMed Central  Google Scholar 

  • Bauer M, Kluge C, Bach D, Bradbury D, Heinze HJ, Dolan RJ, Driver J (2012) Cholinergic enhancement of visual attention and neural oscillations in the human brain. Curr Biol 22(5):397–402. doi:10.1016/j.cub.2012.01.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belujon P, Grace AA (2008) Critical role of the prefrontal cortex in the regulation of hippocampus-accumbens information flow. J Neurosci 28:9797–9805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bentley P, Driver J, Dolan RJ (2011) Cholinergic modulation of cognition: insights from human pharmacological functional neuroimaging. Prog Neurobiol 94(4):360–388. doi:10.1016/j.pneurobio.2011.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berry AS, Demeter E, Sabhapathy S, English BA, Blakely RD, Sarter M, Lustig C (2014) Disposed to distraction: genetic variation in the cholinergic system influences distractibility but not time-on-task effects. J Cogn Neurosci 26(9):1981–1991. doi:10.1162/jocn_a_00607

    Article  PubMed  PubMed Central  Google Scholar 

  • Berry AS, Blakely RD, Sarter M, Lustig C (2015) Cholinergic capacity mediates prefrontal engagement during challenges to attention: evidence from imaging genetics. Neuroimage 108:386–395. doi:10.1016/j.neuroimage.2014.12.036

    Article  CAS  PubMed  Google Scholar 

  • Berry AS, Sarter M, Lustig C (in prep) Frontoparietal correlates of attentional effort during challenges to attention

    Google Scholar 

  • Berry AS, Sarter M, Gehring WJ, Lustig C (in prep) Going in: frontoparietal responses associated with shifts from perceptual to reflective attention

    Google Scholar 

  • Blatow M, Rozov A, Katona I, Hormuzdi SG, Meyer AH, Whittington MA, Monyer H (2003) A novel network of multipolar bursting interneurons generates theta frequency oscillations in neocortex. Neuron 38(5):805–817. doi:10.1016/s0896-6273(03)00300-3

    Article  CAS  PubMed  Google Scholar 

  • Bloem B, Poorthuis RB, Mansvelder HD (2014a) Cholinergic modulation of the medial prefrontal cortex: the role of nicotinic receptors in attention and regulation of neuronal activity. Frontiers Neural Circ 8. doi:10.3389/fncir.2014.00017

  • Bloem B, Schoppink L, Rotaru DC, Faiz A, Hendriks P, Mansvelder HD, van de Berg WD, Wouterlood FG (2014b) Topographic mapping between basal forebrain cholinergic neurons and the medial prefrontal cortex in mice. J Neurosci 34:16234–16246

    Article  PubMed  CAS  Google Scholar 

  • Bowie CR, Leung WW, Reichenberg A, McClure MM, Patterson TL, Heaton RK, Harvey PD (2008) Predicting schizophrenia patients’ real-world behavior with specific neuropsychological and functional capacity measures. Biol Psychiatry 63(5):505–511. doi:10.1016/j.biopsych.2007.05.022

    Article  PubMed  Google Scholar 

  • Brady AM, O’Donnell P (2004) Dopaminergic modulation of prefrontal cortical input to nucleus accumbens neurons in vivo. J Neurosci 24:1040–1049

    Article  CAS  PubMed  Google Scholar 

  • Braver TS (2012) The variable nature of cognitive control: a dual mechanisms framework. Trends Cogn Sci 16(2):106–113. doi:10.1016/j.tics.2011.12.010

    Article  PubMed  PubMed Central  Google Scholar 

  • Briand LA, Gritton H, Howe WM, Young DA, Sarter M (2007) Modulators in concert for cognition: modulator interactions in the prefrontal cortex. Prog Neurobiol 83(2):69–91. doi:10.1016/j.pneurobio.2007.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgess PW, Dumontheil I, Gilbert SJ (2007) The gateway hypothesis of rostral prefrontal cortex (area 10) function. Trends Cogn Sci 11(7):290–298. doi:10.1016/j.tics.2007.05.004

    Article  PubMed  Google Scholar 

  • Cader S, Cifelli A, Abu-Omar Y, Palace J, Matthews PM (2006) Reduced brain functional reserve and altered functional connectivity in patients with multiple sclerosis. Brain 129:527–537. doi:10.1093/brain/awh670

    Article  PubMed  Google Scholar 

  • Cairo TA, Woodward TS, Ngan ETC (2004) An event-related fMRI study of maintenance brain activity in schizophrenia during the performance of a variable load working memory task. Schizophr Res 67(1):262

    Google Scholar 

  • Callaway E III, Jones RT, Donchin E (1970) Auditory evoked potential variability in schizophrenia. Electroencephalogr Clin Neurophysiol 29(5):421–428

    Article  PubMed  Google Scholar 

  • Callicott JH, Mattay VS, Bertolino A, Finn K, Coppola R, Frank JA, Weinberger DR (1999) Physiological characteristics of capacity constraints in working memory as revealed by functional MRI. Cereb Cortex 9(1):20–26. doi:10.1093/cercor/9.1.20

    Article  CAS  PubMed  Google Scholar 

  • Cappell KA, Gmeindl L, Reuter-Lorenz PA (2010) Age differences in prefontal recruitment during verbal working memory maintenance depend on memory load. Cortex 46(4):462–473. doi:10.1016/j.cortex.2009.11.009

    Article  PubMed  Google Scholar 

  • Carr DB, Sesack SR (2000) Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. J Neurosci 20:3864–3873

    CAS  PubMed  Google Scholar 

  • Castellanos FX, Sonuga-Barke EJS, Scheres A, Di Martino A, Hyde C, Walters JR (2005) Varieties of attention-deficit/hyperactivity disorder-related intra-individual variability. Biol Psychiatry 57(11):1416–1423. doi:10.1016/j.biopsych.2004.12.005

    Article  PubMed  PubMed Central  Google Scholar 

  • Castro-Alamancos MA, Gulati T (2014) Neuromodulators produce distinct activated states in neocortex. J Neurosci 34:12353–12367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chun MM, Johnson MK (2011) Memory: enduring traces of perceptual and reflective attention. Neuron 72(4):520–535. doi:10.1016/j.neuron.2011.10.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole VT, Weinberger DR, Dickinson D (2011) Intra-individual variability across neuropsychological tasks in schizophrenia: a comparison of patients, their siblings, and healthy controls. Schizophr Res 129(1):91–93. doi:10.1016/j.schres.2011.03.007

    Article  PubMed  PubMed Central  Google Scholar 

  • Cornblatt BA, Keilp JG (1994) Impaired attention, genetics, and the pathophysiology of schizophrenia. Schizophr Bull 20(1):31–46

    Article  CAS  PubMed  Google Scholar 

  • Dani JA, Bertrand D (2007) Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol 47:699–729

    Google Scholar 

  • Deco G, Thiele A (2011) Cholinergic control of cortical network interactions enables feedback-mediated attentional modulation. Eur J Neurosci 34(1):146–157. doi:10.1111/j.1460-9568.2011.07749.x

    Article  PubMed  Google Scholar 

  • Demeter E, Sarter M, Lustig C (2008) Rats and humans paying attention: cross-species task development for translational research. Neuropsychology 22(6):787–799. doi:10.1037/a0013712

    Article  PubMed  PubMed Central  Google Scholar 

  • Demeter E, Hernandez-Garcia L, Sarter M, Lustig C (2011) Challenges to attention: a continuous arterial spin labeling (ASL) study of the effects of distraction on sustained attention. Neuroimage 54(2):1518–1529. doi:10.1016/j.neuroimage.2010.09.026

    Article  PubMed  Google Scholar 

  • Demeter E, Guthrie SK, Taylor SF, Sarter M, Lustig C (2013) Increased distractor vulnerability but preserved vigilance in patients with schizophrenia: evidence from a translational sustained attention task. Schizophr Res 144(1–3):136–141. doi:10.1016/j.schres.2013.01.003

    Article  PubMed  Google Scholar 

  • Demeter E, de Alburquerque D, Woldorff M (2015) The effects of distraction on the brain processes underlying signal detection. Poster presented at the Cognitive Neuroscience Society Meeting, New York

    Google Scholar 

  • Deserno L, Boehme R, Heinz A, Schlagenhauf F (2013) Reinforcement learning and dopamine in schizophrenia: dimensions of symptoms or specific features of a disease group? Frontiers Psychiatry 4:172. doi:10.3389/fpsyt.2013.00172

    Article  Google Scholar 

  • Dima D, Dietrich DE, Dillo W, Emrich HM (2010) Impaired top-down processes in schizophrenia: a DCM study of ERPs. Neuroimage 52(3):824–832. doi:10.1016/j.neuroimage.2009.12.086

    Article  PubMed  Google Scholar 

  • Disney AA, Aoki C (2008) Muscarinic acetylcholine receptors in macaque v1 are most frequently expressed by parvalbumin-immunoreactive neurons. J Comp Neurol 507(5):1748–1762. doi:10.1002/cne.21616

    Article  PubMed  PubMed Central  Google Scholar 

  • Donchin E, Callaway E, Jones RT (1970) Auditory evoked potential variability in schizophrenia.2. Application of discriminant analysis. Electroencephalogr Clin Neurophysiol 29(5):429. doi:10.1016/0013-4694(70)90060-x

    Article  CAS  PubMed  Google Scholar 

  • Egeland J, Rund BR, Sundet K, Landro NI, Asbjornsen A, Lund A, Hugdahl K (2003) Attention profile in schizophrenia compared with depression: differential effects of processing speed, selective attention and vigilance. Acta Psychiatr Scand 108(4):276–284. doi:10.1034/j.1600-0447.2003.00146.x

    Article  CAS  PubMed  Google Scholar 

  • Flagel SB, Akil H, Robinson TE (2009) Individual differences in the attribution of incentive salience to reward-related cues: implications for addiction. Neuropharmacology 56:139–148. doi:10.1016/j.neuropharm.2008.06.027

    Article  CAS  PubMed  Google Scholar 

  • Flagel SB, Clark JJ, Robinson TE, Mayo L, Czuj A, Willuhn I, Akil H (2011) A selective role for dopamine in stimulus-reward learning. Nature 469(7328):53–63. doi:10.1038/nature09588

    Article  CAS  PubMed  Google Scholar 

  • Fletcher PC, McKenna PJ, Frith CD, Grasby PM, Friston KJ, Dolan RJ (1998) Brain activations in schizophrenia during a graded memory task studied with functional neuroimaging. Arch Gen Psychiatry 55:1001–1008. doi:10.1001/archpsyc.55.11.1001

    Article  CAS  PubMed  Google Scholar 

  • Floresco SB (2015) The nucleus accumbens: an interface between cognition, emotion, and action. Annu Rev Psychol 66(66):25–52. doi:10.1146/annurev-psych-010213-115159

    Article  PubMed  Google Scholar 

  • Ford JM, White P, Lim KO, Pfefferbaum A (1994) Schizophrenics have fewer and smaller p300s—a single-trial analysis. Biol Psychiatry 35(2):96–103. doi:10.1016/0006-3223(94)91198-3

    Article  CAS  PubMed  Google Scholar 

  • Foster DJ, Choi DL, Conn PJ, Rook JM (2014) Activation of M-1 and M-4 muscarinic receptors as potential treatments for Alzheimer’s disease and schizophrenia. Neuropsychiatr Dis Treat 10:183–191. doi:10.2147/ndt.s55104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fukushima J, Morita N, Fukushima K, Chiba T, Tanaka S, Yamashita I (1990) Voluntary control of saccadic eye-movements in patients with schizophrenic and affective-disorders. J Psychiatr Res 24(1):9. doi:10.1016/0022-3956(90)90021-h

    Article  CAS  PubMed  Google Scholar 

  • Gagne A-M, Hebert M, Maziade M (2015) Revisiting visual dysfunctions in schizophrenia from the retina to the cortical cells: a manifestation of defective neurodevelopment. Prog Neuropsychopharmacol Biol Psychiatry 62:29–34. doi:10.1016/j.pnpbp.2015.04.007

    Article  PubMed  Google Scholar 

  • Gaykema RP, van Weeghel R, Hersh LB, Luiten PG (1991) Prefrontal cortical projections to the cholinergic neurons in the basal forebrain. J Comp Neurol 303:563–583

    Article  CAS  PubMed  Google Scholar 

  • Giesbrecht B, Woldorff MG, Song AW, Mangun GR (2003) Neural mechanisms of top-down control during spatial and feature attention. Neuroimage 19(3):496–512. doi:10.1016/s1053-8119(03)00162-9

    Article  CAS  PubMed  Google Scholar 

  • Gilmour G, Gastambide F, Marston H, Walton ME (2015) Using intermediate cogntiive endpoints to facilitate translational research in schizophrenia. Curr Opin Behav Sci 4:128–135

    Article  PubMed  PubMed Central  Google Scholar 

  • Goghari VM (2011) Executive functioning-related brain abnormalities associated with the genetic liability for schizophrenia: an activation likelihood estimation meta-analysis. Psychol Med 41(6):1239–1252. doi:10.1017/s0033291710001972

    Article  CAS  PubMed  Google Scholar 

  • Gold JM, Fuller RL, Robinson BM, Braun EL, Luck SJ (2007) Impaired top-down control of visual search in schizophrenia. Schizophr Res 94(1–3):148–155. doi:10.1016/j.schres.2007.04.023

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorka AX, Hanson JL, Radtke SR, Hariri AR (2014) Reduced hippocampal and medial prefrontal gray matter mediate the association between reported childhood maltreatment and trait anxiety in adulthood and predict sensitivity to future life stress. Biol Mood Anxiety Disord 4:12. doi:10.1186/2045-5380-4-12

    Article  PubMed  PubMed Central  Google Scholar 

  • Gracitelli CPB, Abe RY, Diniz-Filho A, Vaz-de-Lima FB, Paranhos A Jr, Medeiros FA (2015) Ophthalmology issues in schizophrenia. Curr Psychiatr Rep 17(5). doi:10.1007/s11920-015-0569-x

  • Green MF (1996) What are the functional consequences of neurocognitive deficits in schizophrenia? Am J Psychiatry 153(3):321–330

    Article  CAS  PubMed  Google Scholar 

  • Grillon C, Courchesne E, Ameli R, Geyer MA, Braff DL (1990) Increased distractibility in schizophrenic-patients—electrophysiologic and behavioral evidence. Arch Gen Psychiatry 47(2):171–179

    Article  CAS  PubMed  Google Scholar 

  • Hahn B, Robinson BM, Kaiser ST, Matveeva TM, Harvey AN, Luck SJ, Gold JM (2012) Kraepelin and bleuler had it right: people with schizophrenia have deficits sustaining attention over time. J Abnorm Psychol 121(3):641–648. doi:10.1037/a0028492

    Article  PubMed  PubMed Central  Google Scholar 

  • Hangya B, Ranade SP, Lorenc M, Kepecs A (2015) Central cholinergic neurons are rapidly recruited by reinforcement feedback. Cell 162(5):1155–1168. doi:10.1016/j.cell.2015.07.057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasselmo ME, McGaughy J (2004) High acetylcholine levels set circuit dynamics for attention and encoding and low acetylcholine levels set dynamics for consolidation. In: Descarries L, Krnjevic K, Steriade M (eds) Acetylcholine in the cerebral cortex 145:207–231

    Google Scholar 

  • Hasselmo ME, Sarter M (2011) Modes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacology 36(1):52–73. doi:10.1038/npp.2010.104

    Article  CAS  PubMed  Google Scholar 

  • Hasselmo ME, Anderson BP, Bower JM (1992) Cholinergic modulation of cortical associative memory function. J Neurophysiol 67(5):1230–1246

    CAS  PubMed  Google Scholar 

  • Higley MJ, Picciotto MR (2014) Neuromodulation by acetylcholine: examples from schizophrenia and depression. Curr Opin Neurobiol 29C:88–95

    Article  CAS  Google Scholar 

  • Himmelheber AM, Sarter M, Bruno JP (2000) Increases in cortical acetylcholine release during sustained attention performance in rats. Brain Res Cogn Brain Res 9(3):313–325

    Article  CAS  PubMed  Google Scholar 

  • Howes OD, Kapur S (2009) The dopamine hypothesis of schizophrenia: version III–the final common pathway. Schizophr Bull 35:549–562

    Article  PubMed  PubMed Central  Google Scholar 

  • Howe WM, Ji J, Parikh V, Williams S, Mocaer E, Trocme-Thibierge C, Sarter M (2010) Enhancement of attentional performance by selective stimulation of alpha 4 beta 2*nAChRs: underlying cholinergic mechanisms. Neuropsychopharmacology 35(6):1391–1401. doi:10.1038/npp.2010.9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howe WM, Berry AS, Francois J, Gilmour G, Carp JM, Tricklebank M, Sarter M (2013) Prefrontal cholinergic mechanisms instigating shifts from monitoring for cues to cue-guided performance: converging electrochemical and fMRI evidence from rats and humans. J Neurosci 33(20):8742–8752. doi:10.1523/jneurosci.5809-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jablensky A (2015) Schizophrenia or schizophrenias? The challenge of genetic parsing of a complex disorder. Am J Psychiatr 172(2):105–107. doi:10.1176/appi.ajp.2014.14111452

    Article  PubMed  Google Scholar 

  • Javitt DC, Spencer KM, Thaker GK, Winterer G, Hajos M (2008) Neurophysiological biomarkers for drug development in schizophrenia. Nat Rev Drug Discov 7(1):68–83. doi:10.1038/nrd2463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen J, Willeit M, Zipursky RB, Savina I, Smith AJ, Menon M, Kapur S (2008) The formation of abnormal associations in schizophrenia: neural and behavioral evidence. Neuropsychopharmacology 33(3):473–479. doi:10.1038/sj.npp.1301437

    Article  PubMed  Google Scholar 

  • Ji W, Gămănuţ R, Bista P, D’Souza RD, Wang Q, Burkhalter A (2015) Modularity in the organization of mouse primary visual cortex. Neuron 87:632–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jimura K, Locke HS, Braver TS (2010) Prefrontal cortex mediation of cognitive enhancement in rewarding motivational contexts. Proc Nat Acad Sci USA 107(19):8871–8876. doi:10.1073/pnas.1002007107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaiser S, Roth A, Rentrop M, Friederich H-C, Bender S, Weisbrod M (2008) Intra-individual reaction time variability in schizophrenia, depression and borderline personality disorder. Brain Cogn 66(1):73–82. doi:10.1016/j.bandc.2007.05.007

    Article  PubMed  Google Scholar 

  • Kapur S, Mamo D (2003) Half a century of antipsychotics and still a central role for dopamine D2 receptors. Prog Neuropsychopharmacol Biol Psychiatry 27:1081–1090

    Article  CAS  PubMed  Google Scholar 

  • Keefe RSE, Vinogradov S, Medalia A, Silverstein SM, Bell MD, Dickinson D, Stroup TS (2011) Report from the working group conference on multisite trial design for cognitive remediation in schizophrenia. Schizophr Bull 37(5):1057–1065. doi:10.1093/schbul/sbq010

  • Koch K, Wagner G, Schultz C, Schachtzabel C, Nenadic I, Axer M, Schloesser RGM (2009) Altered error-related activity in patients with schizophrenia. Neuropsychologia 47(13):2843–2849. doi:10.1016/j.neuropsychologia.2009.06.010

    Article  PubMed  Google Scholar 

  • Koch K, Schachtzabel C, Wagner G, Schikora J, Schultz C, Reichenbach JR, Sauer H, Schlosser RGM (2010) Altered activation in association with reward-related trial-and-error activity in patients with schizophrenia. NeuroImage 50:223–232

    Article  PubMed  Google Scholar 

  • Kogoj A, Pirtosek Z, Tomori M, Vodusek DB (2005) Event-related potentials elicited by distractors in an auditory oddball paradigm in schizophrenia. Psychiatry Res 137(1–2):49–59. doi:10.1016/j.psychres.2005.07.017

    Article  PubMed  Google Scholar 

  • Kozak R, Bruno JP, Sarter M (2006) Augmented prefrontal acetylcholine release during challenged attentional performance. Cereb Cortex 16(1):9–17. doi:10.1093/cercor/bhi079

    Article  PubMed  Google Scholar 

  • Kozak R, Martinez V, Young D, Brown H, Bruno JP, Sarter M (2007) Toward a neuro-cognitive animal model of the cognitive symptoms of schizophrenia: disruption of cortical cholinergic neurotransmission following repeated amphetamine exposure in attentional task-performing, but not non-performing, rats. Neuropsychopharmacology 32(10):2074–2086. doi:10.1038/sj.npp.1301352

    Article  CAS  PubMed  Google Scholar 

  • Krebs M, Boehler N, Roberts C, Song W, Woldorff G (2012) The involvement of the dopaminergic midbrain and cortico-striatal-thalamic circuits in the integration of reward prospect and attentional task demands. Cereb Cortex 22:607–615

    Article  PubMed  Google Scholar 

  • Kruse AC, Weiss DR, Rossi M, Hu J, Hu K, Eitel K, Shoichet BK (2013) Muscarinic receptors as model targets and antitargets for structure-based ligand discovery. Mol Pharmacol 84(4):528–540. doi:10.1124/mol.113.087551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kucinski A, Sarter M (2015) Modeling parkinson’s disease falls associated with brainstem cholinergic systems decline. Behav Neurosci 129(2):96–104. doi:10.1037/bne0000048

    Article  PubMed  PubMed Central  Google Scholar 

  • Kucinski A, Paolone G, Bradshaw M, Albin RL, Sarter M (2013) Modeling fall propensity in parkinson’s disease: deficits in the attentional control of complex movements in rats with cortical-cholinergic and striatal-dopaminergic deafferentation. J Neurosci 33(42):16522–16539. doi:10.1523/jneurosci.2545-13.2013

    Article  CAS  PubMed  Google Scholar 

  • Kucinski AJ, Koshy Cherian A, Valuskova P, Yegla B, Parikh V, Robinson T, Sarter M (2015) Prone to addiction as well as to falls: poor attention in sign-tracking rats extends to complex movement control and is associated with regression of choline transporter capacity. Society for Neuroscience Annual Meeting, Chicago, IL

    Google Scholar 

  • Lambe EK, Picciotto MR, Aghajanian GK (2003) Nicotine induces glutamate release from thalamocortical terminals in prefrontal cortex. Neuropsychopharmacology 28(2):216–225. doi:10.1038/sj.npp.1300032

    Article  CAS  PubMed  Google Scholar 

  • Laycock R, Crewther SG, Crewther DP (2007) A role for the ‘magnocellular advantage’ in visual impairments in neuro developmental and psychiatric disorders. Neurosci Biobehav Rev 31(3):363–376. doi:10.1016/j.neubiorev.2006.10.003

    Article  CAS  PubMed  Google Scholar 

  • Leonard CJ, Robinson BM, Hahn B, Gold JM, Luck SJ (2014) Enhanced distraction by magnocellular salience signals in schizophrenia. Neuropsychologia 56:359–366. doi:10.1016/j.neuropsychologia.2014.02.011

    Article  PubMed  PubMed Central  Google Scholar 

  • Lesh TA, Niendam TA, Minzenberg MJ, Carter CS (2011) Cognitive control deficits in schizophrenia: mechanisms and meaning. Neuropsychopharmacology 36(1):316–338. doi:10.1038/npp.2010.156

    Article  PubMed  Google Scholar 

  • Luck SJ, Gold JM (2008) The construct of attention in schizophrenia. Biol Psychiatry 64(1):34–39. doi:10.1016/j.biopsych.2008.02.014

    Article  PubMed  PubMed Central  Google Scholar 

  • Luck SJ, Ford JM, Sarter M, Lustig C (2012) CNTRICS final biomarker selection: control of attention. Schizophr Bull 38(1):53–61. doi:10.1093/schbul/sbr065

    Article  PubMed  Google Scholar 

  • Lukatch HS, MacIver MB (1997) Physiology, pharmacology, and topography of cholinergic neocortical oscillations in vitro. J Neurophysiol 77(5):2427–2445

    CAS  PubMed  Google Scholar 

  • Lustig C, Jantz T (2015) Questions of age differences in interference control: When and how, not if? Brain Res 1612:59–69

    Article  CAS  PubMed  Google Scholar 

  • Lustig C, Kozak R, Sarter M, Young JW, Robbins TW (2013) CNTRICS final animal model task selection: control of attention. Neurosci Biobehav Rev 37(9):2099–2110. doi:10.1016/j.neubiorev.2012.05.009

    Article  CAS  PubMed  Google Scholar 

  • MacDonald SWS, Nyberg L, Backman L (2006) Intra-individual variability in behavior: links to brain structure, neurotransmission and neuronal activity. Trends Neurosci 29(8):474–480. doi:10.1016/j.tins.2006.06.011

    Article  CAS  PubMed  Google Scholar 

  • Manoach DS (2003) Prefrontal cortex dysfunction during working memory performance in schizophrenia: reconciling discrepant findings. Schizophr Res 60(2–3):285–298. doi:10.1016/s0920-9964(02)00294-3

    Article  PubMed  Google Scholar 

  • Manoach DS, Press DZ, Thangaraj V, Searl MM, Goff DC, Halpern E, Warach S (1999) Schizophrenic subjects activate dorsolateral prefrontal cortex during a working memory task, as measured by fMRI. Biol Psychiatry 45(9):1128–1137. doi:10.1016/s0006-3223(98)00318-7

    Article  CAS  PubMed  Google Scholar 

  • Manoach DS, Gollub RL, Benson ES, Searl MM, Goff DC, Halpern E, Rauch SL (2000) Schizophrenic subjects show aberrant fMRI activation of dorsolateral prefrontal cortex and basal ganglia during working memory performance. Biol Psychiatry 48(2):99–109. doi:10.1016/s0006-3223(00)00227-4

    Article  CAS  PubMed  Google Scholar 

  • Markou A, Chiamulera C, Geyer MA, Tricklebank M, Steckler T (2009) Removing obstacles in neuroscience drug discovery: the future path for animal models. Neuropsychopharmacology 34(1):74–89. doi:10.1038/npp.2008.173

    Article  CAS  PubMed  Google Scholar 

  • Markou A, Salamone JD, Bussey TJ, Mar AC, Brunnerd D, Gilmour G, Balsam P (2013) Measuring reinforcement learning and motivation constructs in experimental animals: relevance to the negative symptoms of schizophrenia. Neurosci Biobehav Rev 37(9):2149–2165. doi:10.1016/j.neubiorev.2013.08.007

    Article  PubMed  Google Scholar 

  • Martinez V, Sarter M (2004) Lateralized attentional functions of cortical cholinergic inputs. Behav Neurosci 118(5):984–991. doi:10.1037/0735-7044.118.5.984

    Article  PubMed  Google Scholar 

  • Mattay VS, Fera F, Tessitore A, Hariri AR, Berman KF, Das S, Weinberger DR (2006) Neurophysiological correlates of age-related changes in working memory capacity. Neurosci Lett 392(1–2):32–37. doi:10.1016/j.neulet.2005.09.025

    Article  CAS  PubMed  Google Scholar 

  • Matthysse S, Levy DL, Wu YN, Rubin DB, Holzman P (1999) Intermittent degradation in performance in schizophrenia. Schizophr Res 40(2):131–146. doi:10.1016/s0920-9964(99)00038-9

    Article  CAS  PubMed  Google Scholar 

  • McGaughy J, Sarter M (1995) Behavioral vigilance in rats—task validation and effects of age, amphetamine, and benzodiazepine receptor ligands. Psychopharmacology 117(3):340–357. doi:10.1007/bf02246109

    Article  CAS  PubMed  Google Scholar 

  • McGaughy J, Sarter M (1999) Effects of ovariectomy, 192 IgG-saporin-induced cortical cholinergic deafferentatino, and administration of estradiol on sustained attention performance in rats. Behav Neurosci 113:1216–1232

    Article  CAS  PubMed  Google Scholar 

  • Mechawar N, Cozzari C, Descarries L (2000) Cholinergic innervation in adult rat cerebral cortex: a quantitative immunocytochemical description. J Comp Neurol 428:305–318

    Article  CAS  PubMed  Google Scholar 

  • Meltzer HY (2015) Pharmacotherapy of cognition in schizophrenia. Curr Opin Behav Sci 4:115–121

    Article  Google Scholar 

  • Mendelsohn A, Pine A, Schiller D (2014) Between thoughts and actions: motivationally salient cues invigorate mental action in the human brain. Neuron 207–217. DOI: 10.1016/j.neuron.2013.10.019

  • Meyer PJ, Lovic V, Saunders BT, Yager LM, Flagel SB, Morrow JD, Robinson TE (2012) Quantifying individual variation in the propensity to attribute incentive salience to reward cues. Plos One 7(6). doi:10.1371/journal.pone.0038987

  • Minzenberg MJ, Laird AR, Thelen S, Carter CS, Glahn DC (2009) Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Arch Gen Psychiatry 66(8):811–822

    Article  PubMed  PubMed Central  Google Scholar 

  • Money TT, Scarr E, Udawela M, Gibbons AS, Jeon WJ, Seo MS, Dean B (2010) Treating schizophrenia: novel targets for the cholinergic system. Cns Neurol Disord Drug Targets 9(2):241–256

    Article  CAS  PubMed  Google Scholar 

  • Muñoz W, Rudy B (2014) Spatiotemporal specificity in cholinergic control of neocortical function. Curr Opin Neurobiol 26C:149–160

    Article  CAS  Google Scholar 

  • Neigh GN, Arnold HM, Rabenstein RL, Sarter M, Bruno JP (2004) Neuronal activity in the nucleus accumbens is necessary for performance-related increases in cortical acetylcholine release. Neuroscience 123:635–645

    Article  CAS  PubMed  Google Scholar 

  • Nelson CL, Sarter M, Bruno JP (2005) Prefrontal cortical modulation of acetylcholine release in posterior parietal cortex. Neuroscience 132:347–359

    Article  CAS  PubMed  Google Scholar 

  • Newman EL, Gupta K, Climer JR, Monaghan CK, Hasselmo ME (2012) Cholinergic modulation of cognitive processing: insights drawn from computational models. Frontiers Behav Neurosci 6. doi:10.3389/fnbeh.2012.00024

  • Nielsen MO, Rostrup E, W S, Bak N, Broberg BV, Lublin H, Glenthoj B (2012) Improvement of brain reward abnormalities by antipsychotic monotherapy in schizophrenia. Arch Gen Psychiatry 69(12):1195–1204. doi:10.1001/archgenpsychiatry.2012.847

    Article  PubMed  Google Scholar 

  • Nikolaus S, Hautzel H, Mueller H-W (2014) Neurochemical dysfunction in treated and nontreated schizophrenia—a retrospective analysis of in vivo imaging studies. Rev Neurosci 25(1):25–96. doi:10.1515/revneuro-2013-0063

    Article  CAS  PubMed  Google Scholar 

  • Nuechterlein KH, Dawson ME (1984) Information-processing and attentional functioning in the developmental course of schizophrenic disorders. Schizophr Bull 10(2):160–203

    Article  CAS  PubMed  Google Scholar 

  • Nuechterlein KH, Luck SJ, Lustig C, Sarter M (2009) CNTRICS final task selection: control of attention. Schizophr Bull 35(1):182–196. doi:10.1093/schbul/sbn158

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Connell RG, Dockree PM, Robertson IH, Bellgrove MA, Foxe JJ, Kelly SP (2009) Uncovering the neural signature of lapsing attention: electrophysiological signals predict errors up to 20s before they occur. J Neurosci 29(26):8604–8611. doi:10.1523/jneurosci.5967-08.2009

    Article  PubMed  CAS  Google Scholar 

  • Paolone G, Angelakos CC, Meyer PJ, Robinson TE, Sarter M (2013a) Cholinergic control over attention in rats prone to attribute incentive salience to reward cues. J Neurosci 33:8321–8335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paolone G, Mallory CS, Cherian AK, Miller TR, Blakely RD, Sarter M (2013b) Monitoring cholinergic activity during attentional performance in mice heterozygous for the choline transporter: a model of cholinergic capacity limits. Neuropharmacology 75:274–285

    Google Scholar 

  • Parikh V, Kozak R, Martinez V, Sarter M (2007) Prefrontal acetylcholine release controls cue detection on multiple timescales. Neuron 56(1):141–154. doi:10.1016/j.neuron.2007.08.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parikh V, Man K, Decker MW, Sarter M (2008) Glutamatergic contributions to nicotinic acetylcholine receptor agonist-evoked cholinergic transients in the prefrontal cortex. J Neurosci 28(14):3769–3780. doi:10.1523/jneurosci.5251-07.2008

    Article  CAS  PubMed  Google Scholar 

  • Parikh V, Ji J, Decker MW, Sarter M (2010) Prefrontal beta 2 subunit-containing and alpha 7 nicotinic acetylcholine receptors differentially control glutamatergic and cholinergic signaling. J Neurosci 30(9):3518–3530. doi:10.1523/jneurosci.5712-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parikh V, Peters MS, Blakely RD, Sarter M (2013) The presynaptic choline transporter imposes limits on sustained cortical acetylcholine release and attention. J Neurosci 33(6):2326–2337. doi:10.1523/jneurosci.4993-12.2013

  • Parry AMM, Scott RB, Palace J, Smith S, Matthews PM (2003) Potentially adaptive functional changes in cognitive processing for patients with multiple sclerosis and their acute modulation by rivastigmine. Brain 126:2750–2760. doi:10.1093/brain/awg284

    Article  PubMed  Google Scholar 

  • Peters MS, Demeter E, Lustig C, Bruno JP, Sarter M (2011) Enhanced control of attention by stimulating mesolimbic-corticopetal cholinergic circuitry. J Neurosci 31(26):9760–9771. doi:10.1523/jneurosci.1902-11.2011

  • Picciotto MR, Higley MJ, Mineur YS (2012) Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron 76(1):116–129. doi:10.1016/j.neuron.2012.08.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raizada RDS, Poldrack RA (2007) Challenge-driven attention: interacting frontal and brainstem systems. Frontiers Hum Neurosci 1:3. doi:10.3389/neuro.09.003.2007

    Google Scholar 

  • Reinhart RMG, Zhu J, Park S, Woodman GF (2015) Synchronizing theta oscillations with direct-current stimulation strengthens adaptive control in the human brain. Proc Nat Acad Sci USA 112(30):9448–9453. doi:10.1073/pnas.1504196112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reuter-Lorenz PA, Lustig C (2005) Brain aging: reorganizing discoveries about the aging mind. Curr Opin Neurobiol 15(2):245–251. doi:10.1016/j.conb.2005.03.016

    Article  CAS  PubMed  Google Scholar 

  • Reuter-Lorenz PA, Cappell KA (2008) Neurocognitive aging and the compensation hypothesis. Curr Dir Psychol Sci 17(3):177–182. doi:10.1111/j.1467-8721.2008.00570.x

    Article  Google Scholar 

  • Riedel G, Platt B, van der Zee E (eds) (2015) Special issue of brain research: the cholinergic system and brain function. Brain Res 221

    Google Scholar 

  • Robbins TW (2002) The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psychopharmacology 163(3–4):362–380. doi:10.1107/s00213-002-1154-7

    Article  CAS  PubMed  Google Scholar 

  • Robinson L, Platt B, Riedel G (2011) Involvement of the cholinergic system in conditioning and perceptual memory. Behav Brain Res 221(2):443–465. doi:10.1016/j.bbr.2011.01.055

    Article  CAS  PubMed  Google Scholar 

  • Roche MW, Silverstein SW, Lenzenweger MF (2015) Intermittent degradation and schizotypy. Schizophr Res Cogn 2:100–104

    Article  PubMed  PubMed Central  Google Scholar 

  • Roschke J, Wagner P, Mann K, Fell J, Grozinger M, Frank C (1996) Single trial analysis of event related potentials: a comparison between schizophrenics and depressives. Biol Psychiatry 40(9):844–852. doi:10.1016/0006-3223(95)00652-4

    Article  CAS  PubMed  Google Scholar 

  • Ross RG, Stevens KE, Proctor WR, Leonard S, Kisley MA, Hunter SK, Adams CE (2010) Research review: cholinergic mechanisms, early brain development, and risk for schizophrenia. J Child Psychol Psychiatry 51(5):535–549. doi:10.1111/j.1469-7610.2009.02187.x

    Article  PubMed  Google Scholar 

  • Roth A, Roesch-Ely D, Bender S, Weisbrod M, Kaiser S (2007) Increased event-related potential latency and amplitude variability in schizophrenia detected through wavelet-based single trial analysis. Int J Psychophysiol 66(3):244–254. doi:10.1016/j.ijpsycho.2007.08.005

    Article  PubMed  Google Scholar 

  • Rowe AR, Mercer L, Casetti V, Sendt K-V, Giaroli G, Shergill SS, Tracy DK (2015) Dementia praecox redux: a systematic review of the nicotinic receptor as a target for cognitive symptoms of schizophrenia. J Psychopharmacol 29(2):197–211. doi:10.1177/0269881114564096

    Article  PubMed  CAS  Google Scholar 

  • Sahakian BJ, Jones G, Levy R, Gray J, Warburton D (1989) The effects of nicotine on attention, information processing, and short-term memory in patients with dementia of the Alzheimer type. Br J Psychiatr 154(6):797–800. doi:10.1192/bjp.154.6.797

    Article  CAS  Google Scholar 

  • Sahakian BJ, Owen AM, Morant NJ, Eagger SA, Boddington S, Crayton L, Levy R (1993) Further analysis of the cognitive effects of tetrahydroaminoacridine (tha) in alzheimers-disease—assessment of attentional and mnemonic function using cantab. Psychopharmacology 110(4):395–401. doi:10.1007/bf02244644

    Article  CAS  PubMed  Google Scholar 

  • Sarter M (2015) Behavioral-cognitive targets for cholinergic enhancement. Curr Opin Behav Sci 4:22–26

    Article  Google Scholar 

  • Sarter M, Tricklebank M (2012) Revitalizing psychiatric drug discovery. Nat Rev Drug Discov 11(6):423–424. doi:10.1038/nrd3755

    Article  CAS  PubMed  Google Scholar 

  • Sarter M, Nelson CL, Bruno JP (2005) Cortical cholinergic transmission and cortical information processing in schizophrenia. Schizophr Bull 31(1):117–138. doi:10.1093/schbul/sbi006

    Article  PubMed  Google Scholar 

  • Sarter M, Gehring WJ, Kozak R (2006) More attention must be paid: the neurobiology of attentional effort. Brain Res Rev 51(2):145–160. doi:10.1016/j.brainresrev.2005.11.002

    Article  PubMed  Google Scholar 

  • Sarter M, Martinez V, Kozak R (2009a) A neurocognitive animal model dissociating between acute illness and remission periods of schizophrenia. Psychopharmacology 202(1–3):237–258. doi:10.1007/s00213-008-1216-6

    Article  CAS  PubMed  Google Scholar 

  • Sarter M, Parikh V, Howe WM (2009b) PERSPECTIVES phasic acetylcholine release and the volume transmission hypothesis: time to move on. Nat Rev Neurosci 10(5):383–386. doi:10.1038/nrn2635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarter M, Lustig C, Taylor SF (2012) Cholinergic contributions to the cognitive symptoms of schizophrenia and the viability of cholinergic treatments. Neuropharmacology 62(3):1544–1553. doi:10.1016/j.neuropharm.2010.12.001

    Article  CAS  PubMed  Google Scholar 

  • Sarter M, Lustig C, Howe WM, Gritton H, Berry AS (2014) Deterministic functions of cortical acetylcholine. Eur J Neurosci 39(11):1912–1920. doi:10.1111/ejn.12515

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarter M, Howe WM, Gritton H (2015) Cortical cholinergic transients for cue detection and attentional mode shifts. In: Wilson GS, Michael AC (eds) Compendium of in vivo monitoring in real-time molecular neuroscience. World Scientific, Singapore, pp 27–44

    Chapter  Google Scholar 

  • Saunders BT, Robinson TE (2012) The role of dopamine in the accumbens core in the expression of Pavlovian-conditioned responses. Eur J Neurosci 36(4):2521–2532. doi:10.1111/j.1460-9568.2012.08217.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Scarr E, Cowie TF, Kanellakis S, Sundram S, Pantelis C, Dean B (2009) Decreased cortical muscarinic receptors define a subgroup of subjects with schizophrenia. Mol Psychiatr 14(11):1017–1023. doi:10.1038/mp.2008.28

    Article  CAS  Google Scholar 

  • Schneider-Garces NJ, Gordon BA, Brumback-Peltz CR, Shin E, Lee Y, Sutton BP, Fabiani M (2010) Span, CRUNCH, and beyond: working memory capacity and the aging brain. J Cogn Neurosci 22(4):655–669. doi:10.1162/jocn.2009.21230

    Article  PubMed  PubMed Central  Google Scholar 

  • Scognamiglio C, Houenou J (2014) A meta-analysis of fMRI studies in healthy relatives of patients with schizophrenia. Aust N Z J Psychiatr 48(10):907–916. doi:10.1177/0004867414540753

    Article  Google Scholar 

  • Sebastian A, Baldermann C, Feige B, Katzev M, Scheller E, Hellwig B, Kloeppel S (2013) Differential effects of age on subcomponents of response inhibition. Neurobiol Aging 34(9):2183–2193. doi:10.1016/j.neurobiolaging.2013.03.013

    Article  CAS  PubMed  Google Scholar 

  • Seo MS, Scarr E, Dean B (2014) An investigation of the factors that regulate muscarinic receptor expression in schizophrenia. Schizophr Res 158(1–3):247–254. doi:10.1016/j.schres.2014.06.039

    Article  PubMed  Google Scholar 

  • Sesack SR, Grace AA (2010) Cortico-basal ganglia reward network: microcircuitry. Neuropsychopharmacology 35:27–47

    Article  PubMed  Google Scholar 

  • Shoshina II, Shelepin YE, Semenova NB (2014) Frequency-contrast sensitivity of visual stimulus perception in patients with schizophrenia treated with atypical and typical antipsychotics. Hum Physiol 40(1):35–39. doi:10.1134/s0362119714010150

    Article  CAS  Google Scholar 

  • Silverstein SM, Matteson S, Knight RA (1996) Reduced top-down influence in auditory perceptual organization in schizophrenia. J Abnorm Psychol 105(4):663–667

    Article  CAS  PubMed  Google Scholar 

  • Skottun BC, Skoyles JR (2007) Contrast sensitivity and magnocellular funciton in schizophrenia. Vision Res 47:2923–2933

    Article  PubMed  Google Scholar 

  • Small DM, Gitelman D, Simmons K, Bloise SM, Parrish T, Mesulam MM (2005) Monetary incentives enhance processing in brain regions mediating top-down control of attention. Cereb Cortex 15:1855–1865

    Article  PubMed  Google Scholar 

  • Smiley JF, Subramanian M, Mesulam MM (1999) Monoaminergic-cholinergic interactions in the primate basal forebrain. Neuroscience 93:817–829

    Article  CAS  PubMed  Google Scholar 

  • Theeuwes J (1992) Perceptual selectivity for color and form. Percept Psychophys 51(6):599–606. doi:10.3758/bf03211656

    Article  CAS  PubMed  Google Scholar 

  • Thiele A (2013) Muscarinic signaling in the brain. Annu Rev Neurosci 36(36):271–294. doi:10.1146/annurev-neuro-062012-170433

    Article  CAS  PubMed  Google Scholar 

  • Torgalsboen A-K, Mohn C, Rund BR (2014) 2 Neurocognitive predictors of remission of symptoms and social and role functioning in the early course of first-episode schizophrenia. Psychiatr Res 216(1):1–5. doi:10.1016/j.psychres.2014.01.031

    Article  Google Scholar 

  • Torgalsboen A-K, Mohn C, Czajkowski N, Rund BR (2015) Relationship between neurocognition and functional recovery in first-episode schizophrenia: results from the second year of the Oslo multi-follow-up study. Psychiatr Res 227(2–3):185–191. doi:10.1016/j.psychres.2015.03.037

    Article  Google Scholar 

  • Umbriaco D, Watkins KC, Descarries L, Cozzari C, Hartman BK (1994) Ultrastructural and morphometric features of the acetylcholine innervation in adult rat parietal cortex: an electron microscopic study in serial sections. J Comp Neurol 348:351–373

    Article  CAS  PubMed  Google Scholar 

  • Van Snellenberg JX, Torres IJ, Thornton AE (2006) Functional neuroimaging of working memory in schizophrenia: task performance as a moderating variable. Neuropsychology 20(5):497–510. doi:10.1037/0894-4105.20.5.497.supp

  • Van Snellenberg JX, Girgis RR, Read C, Thompson JL, Weber J, Wager TD, Slifstein M, Lieberman JA, Abi-Dargham A, Smith EE (2013) Individuals with schizophrenia fail to show normative inverted-U activation in response to fine-grained working memory load manipulation. Schizophr Bull 39:S251–S252 (Abstract)

    Google Scholar 

  • Van Snellenberg JX, Slifstein M, Read C, Weber J, Thompson JL, Wager TD, Smith EE (2015) Dynamic shifts in brain network activation during supracapacity working memory task performance. Hum Brain Mapp 36(4):1245–1264. doi:10.1002/hbm.22699

  • Watanabe M, Sakagami M (2007) Integration of cognitive and motivational context information in the primate prefrontal cortex. Cereb Cortex 17:I101–I109. doi:10.1093/cercor/bhm067

    Article  PubMed  Google Scholar 

  • Weinberger DR, Harrison P (2011) Schizophrenia, 3rd edn. Wiley, New York

    Google Scholar 

  • Wohlberg GW, Kornetsk C (1973) Sustained attention in remitted schizophrenics. Arch Gen Psychiatr 28(4):533–537

    Article  CAS  PubMed  Google Scholar 

  • Wolkin A, Sanfilipo M, Wolf AP, Angrist B, Brodie JD, Rotrosen J (1992) Negative symptoms and hypofrontality in chronic schizophrenia. Arch Gen Psychiatr 49(12):959–965

    Article  CAS  PubMed  Google Scholar 

  • Wong EHF, Yocca F, Smith MA, Lee C-M (2010) Challenges and opportunities for drug discovery in psychiatric disorders: the drug hunters’ perspective. Int J Neuropsychopharmacol 13(9):1269–1284. doi:10.1017/s1461145710000866

    Article  PubMed  Google Scholar 

  • Xiang Z, Huguenard JR, Prince DA (1998) Cholinergic switching within neocortical inhibitory networks. Science 281:985–988

    Article  CAS  PubMed  Google Scholar 

  • Young JW, Markou A (2015) Translational rodent paradigms to investigate neuromechanisms underlying behaviors relevant to amotivation and altered reward processing in schizophrenia. Schizophr Bull 41(5):1024–1034. doi:10.1093/schbul/sbv093

    Article  PubMed  PubMed Central  Google Scholar 

  • Young JW, Light GA, Marston HM, Sharp R, Geyer MA (2009) The 5-choice continuous performance test: evidence for a translational test of vigilance for mice. Plos One 4(1). doi:10.1371/journal.pone.0004227

  • Young JW, Zhou X, Geyer MA (2010) Animal models of schizophrenia. In: Swerdlow NR (ed) Behavioral neurobiology of schizophrenia and its treatment, vol 4, pp 391–433

    Google Scholar 

  • Zaborszky L, Cullinan WE (1992) Projections from the nucleus accumbens to cholinergic neurons of the ventral pallidum: a correlated light and electron microscopic double-immunolabeling study in rat. Brain Res 570:92–101

    Article  CAS  PubMed  Google Scholar 

  • Zaborszky L, Cullinan WE (1996) Direct catecholaminergic-cholinergic interactions in the basal forebrain. I. Dopamine-β-hydroxylase-and tyrosine hydroxylase input to cholinergic neurons. J Comp Neurol 374:535–554

    Article  CAS  PubMed  Google Scholar 

  • Zaborszky L, Gaykema RP, Swanson DJ, Cullinan WE (1997) Cortical input to the basal forebrain. Neuroscience 79:1051–1078

    Article  CAS  PubMed  Google Scholar 

  • Zaborszky L, Buhl DL, Pobalashingham S, Bjaalie JG, Nadasdy Z (2005) Three-dimensional chemoarchitecture of the basal forebrain: spatially specific association of cholinergic and calcium binding protein-containing neurons. Neuroscience 136:697–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaborszky L, Hoemke L, Mohlberg H, Schleicher A, Amunts K, Zilles K (2008) Stereotaxic probabilistic maps of the magnocellular cell groups in human basal forebrain. Neuroimage 42:1127–1141

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaborszky L, van den Pol A, Gyengesi E (2012) The basal forebrain cholinergic projection system in mice. In: The mouse nervous system. Elsevier, Pennsylvania, pp 684–718

    Google Scholar 

  • Zaborszky L, Csordas A, Mosca K, Kim J, Gielow MR, Vadasz C, Nadasdy Z (2015a) Neurons in the basal forebrain project to the cortex in a complex topographic organization that reflects corticocortical connectivity patterns: an experimental study based on retrograde tracing and 3D reconstruction. Cereb Cortex 25:118–137

    Article  PubMed  Google Scholar 

  • Zaborszky L, Duque A, Gielow M, Gombkoto P, Nadasdy Z, Somogyi J (2015b) Organization of the basal forebrain cholinergic projection system: specific or diffuse? In: Paxinos G (ed) The Rat Nervous System. Academic Press, San Diego, pp 491–507

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors’ research was supported by PHS grants MH086530, MH101697, MH093888, DA031656, DA032259, NS091856, and NS078435. We thank Jessica Nicosia and Rohith Pentaparthy for assistance in preparing Fig. 3. We also thank Barbara Sahakian and Trevor Robbins for their comments on an earlier manuscript draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cindy Lustig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lustig, C., Sarter, M. (2015). Attention and the Cholinergic System: Relevance to Schizophrenia. In: Robbins, T.W., Sahakian, B.J. (eds) Translational Neuropsychopharmacology. Current Topics in Behavioral Neurosciences, vol 28. Springer, Cham. https://doi.org/10.1007/7854_2015_5009

Download citation

Publish with us

Policies and ethics