Skip to main content

Neurobiology Driving Hyperactivity in Activity-Based Anorexia

  • Chapter
  • First Online:
Behavioral Neurobiology of Eating Disorders

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 6))

Abstract

Hyperactivity in anorexia nervosa is difficult to control and negatively impacts outcome. Hyperactivity is a key driving force to starvation in an animal model named activity-based anorexia (ABA). Recent research has started unraveling what mechanisms underlie this hyperactivity. Besides a general increase in locomotor activity that may be an expression of foraging behavior and involves frontal brain regions, the increased locomotor activity expressed before food is presented (food anticipatory behavior or FAA) involves hypothalamic neural circuits. Ghrelin plays a role in FAA, whereas decreased leptin signaling is involved in both aspects of increased locomotor activity. We hypothesize that increased ghrelin and decreased leptin signaling drive the activity of dopamine neurons in the ventral tegmental area. In anorexia nervosa patients, this altered activity of the dopamine system may be involved not only in hyperactivity but also in aberrant cognitive processing related to food.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abizaid A, Liu ZW, Andrews ZB, Shanabrough M, Borok E, Elsworth JD, Roth RH, Sleeman MW, Picciotto MR, Tschop MH, Gao XB, Horvath TL (2006) Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Invest 116:3229–3239

    Article  CAS  PubMed  Google Scholar 

  • Ahima RS, Prabakaran D, Mantzoros C, Qu D, Lowell B, Maratos-Flier E, Flier JS (1996) Role of leptin in the neuroendocrine response to fasting. Nature 382:250–252

    Article  CAS  PubMed  Google Scholar 

  • American Psychiatric Association (1994) Diagnostic and statistical manual. APA, Washington DC

    Google Scholar 

  • Ammar AA, Sederholm F, Saito TR, Scheurink AJ, Johnson AE, Sodersten P (2000) NPY-leptin: opposing effects on appetitive and consummatory ingestive behavior and sexual behavior. Am J Physiol Regul Integr Comp Physiol 278:R1627–R1633

    CAS  PubMed  Google Scholar 

  • Aravich PF, Rieg TS, Lauterio TJ, Doerries LE (1993) Beta-endorphin and dynorphin abnormalities in rats subjected to exercise and restricted feeding: relationship to anorexia nervosa? Brain Res. 622(1–2):1–8

    Google Scholar 

  • Avila C, Barros A, Ortet G, Parcet MA, Ibanez MI (2003) Set-shiftingand sensitivity to reward: a possible dopamine mechanism for explaining disinhibitory disorders. Cogn Emot 17:951–959

    Article  Google Scholar 

  • Bardone-Cone AM, Wonderlich SA, Frost RO et al. (2007) Perfectionism and eating disorders: current status and future directions. Clin Psychol Rev 27:384–405

    Google Scholar 

  • Bergen AW, Yeager M, Welch RA, Haque K, Ganjei JK, van den Bree MB, Mazzanti C, Nardi I, Fichter MM, Halmi KA, Kaplan AS, Strober M, Treasure J, Woodside DB, Bulik CM, Bacanu SA, Devlin B, Berrettini WH, Goldman D, Kaye WH (2005) Association of multiple DRD2 polymorphisms with anorexia nervosa. Neuropsychopharmacology. 30(9):1703–10

    Google Scholar 

  • Blum ID, Patterson Z, Khazall R, Lamont EW, Sleeman MW, Horvath TL, Abizaid A (2009) Reduced anticipatory locomotor responses to scheduled meals in ghrelin receptor deficient mice. Neuroscience 164:351–359

    Article  CAS  PubMed  Google Scholar 

  • Broglio F, Gianotti L, Destefanis S, Fassino S, Abbate DG, Mondelli V, Lanfranco F, Gottero C, Gauna C, Hofland L, Van der Lely AJ, Ghigo E (2004) The endocrine response to acute ghrelin administration is blunted in patients with anorexia nervosa, a ghrelin hypersecretory state. Clin Endocrinol 60:592–599

    Article  CAS  Google Scholar 

  • Campfield LA, Smith FJ, Guisez Y, Devos R, Burn P (1995) Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science 269:546–549

    Article  CAS  PubMed  Google Scholar 

  • Choi YH, Li C, Hartzell DL, Little DE, Della-Fera MA, Baile CA (2008) ICV leptin effects on spontaneous physical activity and feeding behavior in rats. Behav Brain Res 188:100–108

    Article  CAS  PubMed  Google Scholar 

  • Coppari R, Ichinose M, Lee CE, Pullen AE, Kenny CD, McGovern RA, Tang V, Liu SM, Ludwig T, Chua SC Jr, Lowell BB, Elmquist JK (2005) The hypothalamic arcuate nucleus: a key site for mediating leptin’s effects on glucose homeostasis and locomotor activity. Cell Metab 1:63–72

    Article  CAS  PubMed  Google Scholar 

  • Cowley MA, Smith RG, Diano S, Tschop M, Pronchuk N, Grove KL, Strasburger CJ, Bidlingmaier M, Esterman M, Heiman ML, Garcia-Segura LM, Nillni EA, Mendez P, Low MJ, Sotonyi P, Friedman JM, Liu H, Pinto S, Colmers WF, Cone RD, Horvath TL (2003) The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 20(37):649–661

    Google Scholar 

  • Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE, Weigle DS (2001) A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50:1714–1719

    Article  CAS  PubMed  Google Scholar 

  • Davis C (1997) Eating disorders and hyperactivity: a psychobiological perspective. Can J Psychiatry 42:168–175

    CAS  PubMed  Google Scholar 

  • Day DE, Keen-Rhinehart E, Bartness TJ (2005) Role of NPY and its receptor subtypes in foraging, food hoarding, and food intake by Siberian hamsters. Am J Physiol Regul Integr Comp Physiol 289:R29–R36

    CAS  PubMed  Google Scholar 

  • de Rijke CE, Hillebrand JJ, Verhagen LA, Roeling TA, Adan RA (2005) Hypothalamic neuropeptide expression following chronic food restriction in sedentary and wheel-running rats. J Mol Endocrinol 35:381–390

    Article  PubMed  CAS  Google Scholar 

  • Druce MR, Neary NM, Small CJ, Milton J, Monteiro M, Patterson M, Ghatei MA, Bloom SR (2006) Subcutaneous administration of ghrelin stimulates energy intake in healthy lean human volunteers. Int J Obes 30:293–296

    Article  CAS  Google Scholar 

  • Elmquist JK, Bjorbaek C, Ahima RS, Flier JS, Saper CB (1998) Distributions of leptin receptor mRNA isoforms in the rat brain. J Comp Neurol 395:535–547

    Article  CAS  PubMed  Google Scholar 

  • Epling WF, Pierce WDSL (1983) A theory of activity-basedanorexia. Int J Eat Disord 3:27–46

    Article  Google Scholar 

  • Exner C, Hebebrand J, Remschmidt H, Wewetzer C, Ziegler A, Herpertz S, Schweiger U, Blum WF, Preibisch G, Heldmaier G, Klingenspor M (2000) Leptin suppresses semi-starvation induced hyperactivity in rats: implications for anorexia nervosa. Mol Psychiatry 5:476–481

    Article  CAS  PubMed  Google Scholar 

  • Faulconbridge LF, Cummings DE, Kaplan JM, Grill HJ (2003) Hyperphagic effects of brainstem ghrelin administration. Diabetes 52:2260–2265

    Article  CAS  PubMed  Google Scholar 

  • Fetissov SO, Bergstr­m U, Johansen JE, H­kfelt T, Schalling M, Ranscht B (2005) Alterations of arcuate nucleus neuropeptidergic development in contactin-deficient mice: comparison with anorexia and food-deprived mice. Eur J Neurosci. 22(12):3217–28

    Google Scholar 

  • Figlewicz DP, Evans SB, Murphy J, Hoen M, Baskin DG (2003) Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat. Brain Res 964:107–115

    Article  CAS  PubMed  Google Scholar 

  • Frank GK, Bailer UF, Henry SE, Drevets W, Meltzer CC, Price JC, Mathis CA, Wagner A, Hoge J, Ziolko S, Barbarich-Marsteller N, Weissfeld L, Kaye WH (2005) Increased dopamine D2/D3 receptor binding after recovery from anorexia nervosa measured by positron emission tomography and [11c]raclopride. Biol Psychiatry 58:908–912

    Article  CAS  PubMed  Google Scholar 

  • Fulton S, Woodside B, Shizgal P (2000) Modulation of brain reward circuitry by leptin. Science 287:125–128

    Article  CAS  PubMed  Google Scholar 

  • Fulton S, Pissios P, Manchon RP, Stiles L, Frank L, Pothos EN, Maratos-Flier E, Flier JS (2006) Leptin regulation of the mesoaccumbens dopamine pathway. Neuron 51:811–822

    Article  CAS  PubMed  Google Scholar 

  • Gelegen C, Collier DA, Campbell IC, Oppelaar H, van den Heuvel J, Adan RA, Kas MJ (2007) Difference in susceptibility to activity-based anorexia in two inbred strains of mice. Eur Neuropsychopharmacol. 17(3):199–205. Epub 2006 Jun 2

    Google Scholar 

  • Gooley JJ, Schomer A, Saper CB (2006) The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms. Nat Neurosci 9:398–407

    Article  CAS  PubMed  Google Scholar 

  • Grill HJ, Schwartz MW, Kaplan JM, Foxhall JS, Breininger J, Baskin DG (2002) Evidence that the caudal brainstem is a target for the inhibitory effect of leptin on food intake. Endocrinology 143:239–246

    Article  CAS  PubMed  Google Scholar 

  • Guan XM, Yu H, Palyha OC, McKee KK, Feighner SD, Sirinathsinghji DJ, Smith RG, Van der Ploeg LH, Howard AD (1997) Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Brain Res Mol Brain Res 48:23–29

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez E, Churruca I, Zarate J, Carrera O, Portillo MP, Cerrato M, Vazquez R, Echevarria E (2009) High ambient temperature reverses hypothalamic MC4 receptor overexpression in an animal model of anorexia nervosa. Psychoneuroendocrinology 34:420–429

    Article  CAS  PubMed  Google Scholar 

  • Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK, Friedman JM (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269:543–546

    Article  CAS  PubMed  Google Scholar 

  • Hayward MD, Pintar JE, Low MJ (2002) Selective reward deficit in mice lacking beta-endorphin and enkephalin. J Neurosci 22:8251–8258

    CAS  PubMed  Google Scholar 

  • Hebebrand J, Blum WF, Barth N, Coners H, Englaro P, Juul A, Ziegler A, Warnke A, Rascher W, Remschmidt H (1997) Leptin levels in patients with anorexia nervosa are reduced in the acute stage and elevated upon short-term weight restoration. Mol Psychiatry 2:330–334

    Article  CAS  PubMed  Google Scholar 

  • Hebebrand J, Exner C, Hebebrand K, Holtkamp C, Casper RC, Remschmidt H, Herpertz-Dahlmann B, Klingenspor M (2003) Hyperactivity in patients with anorexia nervosa and in semistarved rats: evidence for a pivotal role of hypoleptinemia. Physiol Behav. 79(1):25–37

    Google Scholar 

  • Hebebrand J, Muller TD, Holtkamp K, Herpertz-Dahlmann B (2007) The role of leptin in anorexia nervosa: clinical implications. Mol Psychiatry 12:23–35

    Article  CAS  PubMed  Google Scholar 

  • Hillebrand JJ, Koeners MP, de Rijke CE, Kas MJ, Adan RA (2005a) Leptin treatment in activity-based anorexia. Biol Psychiatry 58:165–171

    Article  CAS  PubMed  Google Scholar 

  • Hillebrand JJ, Kas MJ, Adan RA (2005b) alpha-MSH enhances activity-based anorexia. Peptides 26:1690–1696

    Article  CAS  PubMed  Google Scholar 

  • Hillebrand JJ, Kas MJ, Scheurink AJ, van Dijk G, Adan RA (2006) AgRP(83-132) and SHU9119 differently affect activity-based anorexia. Eur Neuropsychopharmacol 16:403–412

    Article  CAS  PubMed  Google Scholar 

  • Hillebrand JJ, Kas MJ, van Elburg AA, Hoek HW, Adan RA (2008) Leptin’s effect on hyperactivity: potential downstream effector mechanisms. Physiol Behav 94:689–695

    Article  CAS  PubMed  Google Scholar 

  • Holtkamp K, Herpertz-Dahlmann B, Mika C, Heer M, Heussen N, Fichter M, Herpertz S, Senf W, Blum WF, Schweiger U, Warnke A, Ballauff A, Remschmidt H, Hebebrand J (2003) Elevated physical activity and low leptin levels co-occur in patients with anorexia nervosa. J Clin Endocrinol Metab 88:5169–5174

    Article  CAS  PubMed  Google Scholar 

  • Holtkamp K, Herpertz-Dahlmann B, Hebebrand K, Mika C, Kratzsch J, Hebebrand J (2006) Physical activity and restlessness correlate with leptin levels in patients with adolescent anorexia nervosa. Biol Psychiatry 60:311–313

    Article  CAS  PubMed  Google Scholar 

  • Hommel JD, Trinko R, Sears RM, Georgescu D, Liu ZW, Gao XB, Thurmon JJ, Marinelli M, DiLeone RJ (2006) Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 51:801–810

    Article  CAS  PubMed  Google Scholar 

  • Horvath TL, Diano S, Sotonyi P, Heiman M, Tschop M (2001) Minireview: ghrelin and the regulation of energy balance–a hypothalamic perspective. Endocrinology 142:4163–4169

    Article  CAS  PubMed  Google Scholar 

  • Hosoda H, Kojima M, Kangawa K (2002) Ghrelin and the regulation of food intake and energy balance. Mol Interv 2:494–503

    Article  CAS  PubMed  Google Scholar 

  • Hotta M, Ohwada R, Akamizu T, Shibasaki T, Takano K, Kangawa K (2009) Ghrelin increases hunger and food intake in patients with restricting-type anorexia nervosa: a pilot study. Endocrine J 56:1119–1128

    Article  CAS  Google Scholar 

  • Howard AD, Feighner SD, Cully DF, Arena JP, Liberator PA, Rosenblum CI, Hamelin M, Hreniuk DL, Palyha OC, Anderson J, Paress PS, Diaz C, Chou M, Liu KK, McKee KK, Pong SS, Chaung LY, Elbrecht A, Dashkevicz M, Heavens R, Rigby M, Sirinathsinghji DJ, Dean DC, Melillo DG, Patchett AA, Nargund R, Griffin PR, DeMartino JA, Gupta SK, Schaeffer JM, Smith RG, Van der Ploeg LH (1996) A receptor in pituitary and hypothalamus that functions in growth hormone release. Science 273:974–977

    Article  CAS  PubMed  Google Scholar 

  • Jerlhag E, Egecioglu E, Dickson SL, Andersson M, Svensson L, Engel JA (2006) Ghrelin stimulates locomotor activity and accumbal dopamine-overflow via central cholinergic systems in mice: implications for its involvement in brain reward. Addict Biol 11:45–54

    Article  CAS  PubMed  Google Scholar 

  • Jerlhag E, Egecioglu E, Dickson SL, Douhan A, Svensson L, Engel JA (2007) Ghrelin administration into tegmental areas stimulates locomotor activity and increases extracellular concentration of dopamine in the nucleus accumbens. Addict Biol 12:6–16

    Article  CAS  PubMed  Google Scholar 

  • Johansen JE, Fetissov SO, Bergstr­m U, Nilsson I, Faè…¦ C, Ranscht B, H­kfelt T, Schalling M (2007) Evidence for hypothalamic dysregulation in mouse models of anorexia as well as in humans. Physiol Behav. 92(1–2):278–82

    Google Scholar 

  • Kas MJ, van Dijk G, Scheurink AJ, Adan RA (2003) Agouti-related protein prevents self-starvation. Mol Psychiatry 8:235–240

    Article  CAS  PubMed  Google Scholar 

  • Kas MJ, van den BR B, AM LM, Lesscher HM, Hillebrand JJ, Schuller AG, Pintar JE, Spruijt BM (2004) Mu-opioid receptor knockout mice show diminished food-anticipatory activity. Eur J Neurosci 20:1624–1632

    Article  PubMed  Google Scholar 

  • Kaye WH, Frank GK, McConaha C (1999) Altered dopamine activity after recovery from restricting-type anorexia nervosa. Neuropsychopharmacology 21:503–506

    Article  CAS  PubMed  Google Scholar 

  • Keen-Rhinehart E, Bartness TJ (2005) Peripheral ghrelin injections stimulate food intake, foraging, and food hoarding in Siberian hamsters. Am J Physiol Regul Integr Comp Physiol 288:R716–R722

    CAS  PubMed  Google Scholar 

  • Keen-Rhinehart E, Bartness TJ (2007) NPY Y1 receptor is involved in ghrelin- and fasting-induced increases in foraging, food hoarding, and food intake. Am J Physiol Regul Integr Comp Physiol 292:R1728–R1737

    CAS  PubMed  Google Scholar 

  • Kirsch P, Reuter M, Mier D et al (2006) Imaging gene-substance interactions: the effect of the DRD2 TaqIA polymorphism and the dopamine agonist bromocriptine on the brain activation during the anticipation of reward. Neurosci Lett 405:196–201

    Google Scholar 

  • Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402:656–660

    Article  CAS  PubMed  Google Scholar 

  • Lambert KG, Porter JH (1992) Pimozide mitigates excessive running in the activity-stress paradigm. Physiol Behav 52:299–304

    Article  CAS  PubMed  Google Scholar 

  • LeSauter J, Hoque N, Weintraub M, Pfaff DW, Silver R (2009) Stomach ghrelin-secreting cells as food-entrainable circadian clocks. Proc Natl Acad Sci USA 106:13582–13587

    Article  CAS  PubMed  Google Scholar 

  • Lopez C, Tchanturia K, Stahl D, Treasure J (2009) Weak central coherence in eating disorders: a step towards looking for an endophenotype of eating disorders. J Clin Exp Neuropsychol 31:117–25

    Google Scholar 

  • Mantzoros C, Flier JS, Lesem MD, Brewerton TD, Jimerson DC (1997) Cerebrospinal fluid leptin in anorexia nervosa: correlation with nutritional status and potential role in resistance to weight gain. J Clin Endocrinol Metab 82:1845–1851

    Article  CAS  PubMed  Google Scholar 

  • Malik S, McGlone F, Bedrossian D, Dagher A (2008) Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metab. 7(5):400–9

    Google Scholar 

  • Marsh DJ, Weingarth DT, Novi DE, Chen HY, Trumbauer ME, Chen AS, Guan XM, Jiang MM, Feng Y, Camacho RE, Shen Z, Frazier EG, Yu H, Metzger JM, Kuca SJ, Shearman LP, Gopal-Truter S, MacNeil DJ, Strack AM, MacIntyre DE, Van der Ploeg LH, Qian S (2002) Melanin-concentrating hormone 1 receptor-deficient mice are lean, hyperactive, and hyperphagic and have altered metabolism. Proc Natl Acad Sci USA. 99(5):3240–5 (Epub 2002 Feb 26)

    Google Scholar 

  • Marsh R, Steinglass JE, Graziano K, Peterson BS, Walsh BT (2007) Self-regulatory control and habit learningin the development of eating disorders. Curr Psychiatric Rev 3:73–83

    Article  Google Scholar 

  • Mayo-Smith W, Rosenthal DI, Goodsitt MM, Klibanski A (1989) Intravertebral fat measurement with quantitative CT in patients with Cushing disease and anorexia nervosa. Radiology 170:835–838

    CAS  PubMed  Google Scholar 

  • Miljic D, Pekic S, Djurovic M, Doknic M, Milic N, Casanueva FF, Ghatei M, Popovic V (2006) Ghrelin has partial or no effect on appetite, growth hormone, prolactin, and cortisol release in patients with anorexia nervosa. J Clin Endocrinol Metab 91:1491–1495

    Article  CAS  PubMed  Google Scholar 

  • Misra M, Miller KK, Herzog DB, Ramaswamy K, Aggarwal A, Almazan C, Neubauer G, Breu J, Klibanski A (2004) Growth hormone and ghrelin responses to an oral glucose load in adolescent girls with anorexia nervosa and controls. J Clin Endocrinol Metab 89:1605–1612

    Article  CAS  PubMed  Google Scholar 

  • Mistlberger RE (1994) Circadian food-anticipatory activity: formal models and physiological mechanisms. Neurosci Biobehav Rev 18:171–195

    Article  CAS  PubMed  Google Scholar 

  • Mistlberger RE, Buijs RM, Challet E, Escobar C, Landry GJ, Kalsbeek A, Pevet P, Shibata S (2009) Standards of evidence in chronobiology: critical review of a report that restoration of Bmal1 expression in the dorsomedial hypothalamus is sufficient to restore circadian food anticipatory rhythms in Bmal1-/- mice. J Circadian Rhythms 7(3):3

    Google Scholar 

  • Mondal MS, Date Y, Yamaguchi H, Toshinai K, Tsuruta T, Kangawa K, Nakazato M (2005) Identification of ghrelin and its receptor in neurons of the rat arcuate nucleus. Regul Pept 126:55–59

    Article  CAS  PubMed  Google Scholar 

  • Monteiro MP, Ribeiro AH, Nunes AF, Sousa MM, Monteiro JD, Aguas AP, Cardoso MH (2007) Increase in ghrelin levels after weight loss in obese Zucker rats is prevented by gastric banding. Obes Surg. 17(12):1599–607. Epub 2007 Nov 30

    Google Scholar 

  • Munzberg H, Myers MG Jr (2005) Molecular and anatomical determinants of central leptin resistance. Nat Neurosci 8:566–570

    Article  PubMed  CAS  Google Scholar 

  • Naleid AM, Grace MK, Cummings DE, Levine AS (2005) Ghrelin induces feeding in the mesolimbic reward pathway between the ventral tegmental area and the nucleus accumbens. Peptides 26:2274–2279

    Article  CAS  PubMed  Google Scholar 

  • Naqvi N, Shiv B, Bechara A (2006) The role of emotion in decision making: a cognitive neuroscience perspective. Curr Dir Psychol Sci 15:260–264

    Article  Google Scholar 

  • Nedvidkova J, Krykorkova I, Bartak V, Papezova H, Gold PW, Alesci S, Pacak K (2003) Loss of meal-induced decrease in plasma ghrelin levels in patients with anorexia nervosa. J Clin Endocrinol Metab 88:1678–1682

    Article  CAS  PubMed  Google Scholar 

  • Nergardh R, Ammar A, Brodin U, Bergstrom J, Scheurink A, Sodersten P (2007) Neuropeptide Y facilitates activity-based-anorexia. Psychoneuroendocrinology 32:493–502

    Article  CAS  PubMed  Google Scholar 

  • Nijenhuis WA, Oosterom J, Adan RA (2001) AgRP(83-132) acts as an inverse agonist on the human-melanocortin-4 receptor. Mol Endocrinol 15:164–171

    Article  CAS  PubMed  Google Scholar 

  • Otto B, Cuntz U, Fruehauf E, Wawarta R, Folwaczny C, Riepl RL, Heiman ML, Lehnert P, Fichter M, Tschop M (2001) Weight gain decreases elevated plasma ghrelin concentrations of patients with anorexia nervosa. Eur J Endocrinol 145:669–673

    Article  CAS  PubMed  Google Scholar 

  • Otto B, Tschöp M, Frühauf E, Heldwein W, Fichter M, Otto C, Cuntz U (2005) Postprandial ghrelin release in anorectic patients before and after weight gain. Psychoneuroendocrinology. 30(6):577–81

    Google Scholar 

  • Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T, Collins F (1995) Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269:540–543

    Article  CAS  PubMed  Google Scholar 

  • Pirke KM, Broocks A, Wilckens T, Marquard R, Schweiger U (1993) Starvation-induced hyperactivity in the rat: the role of endocrine and neurotransmitter changes. Neurosci Biobehav Rev 17:287–294

    Article  CAS  PubMed  Google Scholar 

  • Prince AC, Brooks SJ, Stahl D, Treasure J (2009) Systematic review and meta-analysis of the baseline concentrations and physiologic responses of gut hormones to food in eating disorders. Am J Clin Nutr 89:755–765

    Article  CAS  PubMed  Google Scholar 

  • Riediger T, Traebert M, Schmid HA, Scheel C, Lutz TA, Scharrer E (2003) Site-specific effects of ghrelin on the neuronal activity in the hypothalamic arcuate nucleus. Neurosci Lett 341:151–155

    Article  CAS  PubMed  Google Scholar 

  • Roberts AC, Reekie Y, Braesicke K (2007) Synergistic and regulatory effects of orbitofrontal cortex on amygdala-dependent appetitive behavior. Ann N Y Acad Sci 1121:297– 319

    Google Scholar 

  • Rosenbaum M, Nicolson M, Hirsch J, Murphy E, Chu F, Leibel RL (1997) Effects of weight change on plasma leptin concentrations and energy expenditure. J Clin Endocrinol Metab 82:3647–3654

    Article  CAS  PubMed  Google Scholar 

  • Rosenbaum M, Murphy EM, Heymsfield SB, Matthews DE, Leibel RL (2002) Low dose leptin administration reverses effects of sustained weight-reduction on energy expenditure and circulating concentrations of thyroid hormones. J Clin Endocrinol Metab 87:2391–2394

    Article  CAS  PubMed  Google Scholar 

  • Rosenbaum M, Sy M, Pavlovich K, Leibel RL, Hirsch J (2008) Leptin reverses weight loss-induced changes in regional neural activity responses to visual food stimuli. J Clin Invest. 118(7):2583–91

    Google Scholar 

  • Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404:661–671

    CAS  PubMed  Google Scholar 

  • Shalev U, Yap J, Shaham Y (2001) Leptin attenuates acute food deprivation-induced relapse to heroin seeking. J Neurosci 21:RC129

    Google Scholar 

  • Shiiya T, Nakazato M, Mizuta M, Date Y, Mondal MS, Tanaka M, Nozoe S, Hosoda H, Kangawa K, Matsukura S (2002) Plasma ghrelin levels in lean and obese humans and the effect of glucose on ghrelin secretion. J Clin Endocrinol Metab 87:240–244

    Article  CAS  PubMed  Google Scholar 

  • Shimada M, Tritos NA, Lowell BB, Flier JS, Maratos-Flier E (1998) Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature 396(6712):670–4

    Google Scholar 

  • Sisti HM, Lewis MJ (2001) Naloxone suppression and morphine enhancement of voluntary wheel-running activity in rats. Pharmacol Biochem Behav 70:359–365

    Article  CAS  PubMed  Google Scholar 

  • Soriano-Guillen L, Barrios V, Campos-Barros A, Argente J (2004) Ghrelin levels in obesity and anorexia nervosa: effect of weight reduction or recuperation. J Pediatr 144:36–42

    Article  CAS  PubMed  Google Scholar 

  • Stice E, Spoor S, Bohon C, Small DM (2008) Relation between obesity and blunted striatal response to food is moderated by TaqIA A1 allele. Science. 322(5900):449–52

    Google Scholar 

  • Stice E, Zald D, Dagher A (2010) Dopamine-based reward circuitry responsivity, genetics, and overeating. Curr Top Behav Neurosci. doi:10.1007/7854_2010_89

    Google Scholar 

  • Surwit RS, Edwards CL, Murthy S, Petro AE (2000) Transient effects of long-term leptin supplementation in the prevention of diet-induced obesity in mice. Diabetes 49:1203–1208

    Article  CAS  PubMed  Google Scholar 

  • Szczypka MS, Kwok K, Brot MD, Marck BT, Matsumoto AM, Donahue BA, Palmiter RD (2001) Dopamine production in the caudate putamen restores feeding in dopamine-deficient mice. Neuron. 30(3):819–28

    Google Scholar 

  • Tang-Christensen M, Vrang N, Ortmann S, Bidlingmaier M, Horvath TL, Tschop M (2004) Central administration of ghrelin and agouti-related protein (83-132) increases food intake and decreases spontaneous locomotor activity in rats. Endocrinology 145:4645–4652

    Article  CAS  PubMed  Google Scholar 

  • Tchanturia K, Morris RG, Anderluh MB, Collier DA, Nikolaou V, Treasure J. (2004) Set shifting in anorexia nervosa: an examination before and after weight gain, in full recovery and relationship to childhood and adult OCPD traits. J Psychiatr Res 38:545–52

    Google Scholar 

  • Tolle V, Kadem M, Bluet-Pajot MT, Frere D, Foulon C, Bossu C, Dardennes R, Mounier C, Zizzari P, Lang F, Epelbaum J, Estour B (2003) Balance in ghrelin and leptin plasma levels in anorexia nervosa patients and constitutionally thin women. J Clin Endocrinol Metab 88:109–116

    Article  CAS  PubMed  Google Scholar 

  • Troisi A, Di Lorenzo G, Lega I, Tesauro M, Bertoli A, Leo R, Iantorno M, Pecchioli C, Rizza S, Turriziani M, Lauro R, Siracusano A (2005) Plasma ghrelin in anorexia, bulimia, and binge-eating disorder: relations with eating patterns and circulating concentrations of cortisol and thyroid hormones. Neuroendocrinology 81:259–266

    Article  CAS  PubMed  Google Scholar 

  • van Elburg AA, Hoek HW, Kas MJ, van Engeland H (2007a) Nurse evaluation of hyperactivity in anorexia nervosa: a comparative study. Eur Eat Disord Rev 15:425–429

    Article  PubMed  Google Scholar 

  • van Elburg AA, Kas MJ, Hillebrand JJ, Eijkemans RJ, van Engeland H (2007b) The impact of hyperactivity and leptin on recovery from anorexia nervosa. J Neural Transm 114:1233–1237

    Article  PubMed  CAS  Google Scholar 

  • Verhagen LA, Egecioglu E, Luijendijk MC, Hillebrand JJ, Adan RA, Dickson SL (2010) Acute and chronic suppression of the central ghrelin signaling system reveals a role in food anticipatory activity. Eur Neuropsychopharmacol. [Epub ahead of print]

    Google Scholar 

  • Verhagen LA, Luijendijk MC, Hillebrand JJ, Adan RA (2009) Dopamine antagonism inhibits anorectic behavior in an animal model for anorexia nervosa. Eur Neuropsychopharmacol. 19(3):153–60

    Google Scholar 

  • Vink T, Hinney A, van Elburg AA, van Goozen SH, Sandkuijl LA, Sinke RJ, Herpertz-Dahlmann BM, Hebebrand J, Remschmidt H, van Engeland H, Adan RA (2001) Association between an agouti-related protein gene polymorphism and anorexia nervosa. Mol Psychiatry. 6(3):325–8

    Google Scholar 

  • Wellman PJ, Hollas CN, Elliott AE (2008) Systemic ghrelin sensitizes cocaine-induced hyperlocomotion in rats. Regul Pept 146:33–37

    Article  CAS  PubMed  Google Scholar 

  • Whatmore AJ, Hall CM, Jones J, Westwood M, Clayton PE (2003) Ghrelin concentrations in healthy children and adolescents. Clin Endocrinol 59:649–654

    Article  CAS  Google Scholar 

  • Willesen MG, Kristensen P, Romer J (1999) Co-localization of growth hormone secretagogue receptor and NPY mRNA in the arcuate nucleus of the rat. Neuroendocrinology 70:306–316

    Article  CAS  PubMed  Google Scholar 

  • Wise RA (2002) Brain reward circuitry: insights from unsensed incentives. Neuron 36:229–240

    Article  CAS  PubMed  Google Scholar 

  • Wren AM, Seal LJ, Cohen MA, Brynes AE, Frost GS, Murphy KG, Dhillo WS, Ghatei MA, Bloom SR (2001) Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab 86:5992

    Article  CAS  PubMed  Google Scholar 

  • Zhou D, Shen Z, Strack AM, Marsh DJ, Shearman LP (2005) Enhanced running wheel activity of both Mch1r- and Pmch-deficient mice. Regul Pept. 124(1-3):53–63

    Google Scholar 

  • Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK (2006) Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol 494:528–548

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. H. Adan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Adan, R.A.H., Hillebrand, J.J.G., Danner, U.N., Cano, S.C., Kas, M.J.H., Verhagen, L.A.W. (2010). Neurobiology Driving Hyperactivity in Activity-Based Anorexia. In: Adan, R., Kaye, W. (eds) Behavioral Neurobiology of Eating Disorders. Current Topics in Behavioral Neurosciences, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2010_77

Download citation

Publish with us

Policies and ethics