Skip to main content

In Vivo Functional Imaging of the Olfactory Bulb at Single-Cell Resolution

  • Protocol
  • First Online:
Neuronal Network Analysis

Part of the book series: Neuromethods ((NM,volume 67))

Abstract

Functional properties of neuronal circuits can be best studied in vivo in the living mammalian brain. The use of optical methods, like two-photon calcium imaging, permits analyses of network function at single-cell resolution. This chapter provides a step-by-step description of this technique. Using mouse olfactory bulb as a model system, we compare the performance of genetically encoded calcium sensor TN-XXL and small-molecule calcium indicators; describe how to choose the right calcium indicator and how to load it into the cells of interest; discuss the use of cell type-specific markers and, finally, illustrate the application of this technique for high-resolution in vivo imaging of sensory-driven neuronal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang X, Lou N, Xu Q et al (2006) Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat Neurosci 9:816–823

    Article  PubMed  CAS  Google Scholar 

  2. Nimmerjahn A, Mukamel EA, Schnitzer MJ (2009) Motor behavior activates Bergmann glial networks. Neuron 62:400–412

    Article  PubMed  CAS  Google Scholar 

  3. Halassa MM, Haydon PG (2010) Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu Rev Physiol 72:335–355

    Article  PubMed  CAS  Google Scholar 

  4. Wake H, Moorhouse AJ, Jinno S et al (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29:3974–3980

    Article  PubMed  CAS  Google Scholar 

  5. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    Article  PubMed  CAS  Google Scholar 

  6. Svoboda K, Denk W, Kleinfeld D et al (1997) In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385:161–165

    Article  PubMed  CAS  Google Scholar 

  7. Helmchen F, Fee MS, Tank DW et al (2001) A miniature head-mounted two-photon microscope. High-resolution brain imaging in freely moving animals. Neuron 31:903–912

    Article  PubMed  CAS  Google Scholar 

  8. Piyawattanametha W, Cocker ED, Burns LD et al (2009) In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror. Opt Lett 34:2309–2311

    Article  PubMed  Google Scholar 

  9. Sawinski J, Wallace DJ, Greenberg DS et al (2009) Visually evoked activity in cortical cells imaged in freely moving animals. Proc Natl Acad Sci USA 106:19557–19562

    Article  PubMed  CAS  Google Scholar 

  10. Dombeck DA, Khabbaz AN, Collman F et al (2007) Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron 56:43–57

    Article  PubMed  CAS  Google Scholar 

  11. Dombeck DA, Harvey CD, Tian L et al (2010) Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nat Neurosci 13:1433–1440

    Article  PubMed  CAS  Google Scholar 

  12. Tsien RW, Tsien RY (1990) Calcium channels, stores, and oscillations. Annu Rev Cell Biol 6:715–760

    Article  PubMed  CAS  Google Scholar 

  13. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  PubMed  CAS  Google Scholar 

  14. Verkhratsky A, Orkand RK, Kettenmann H (1998) Glial calcium: homeostasis and signaling function. Physiol Rev 78:99–141

    PubMed  CAS  Google Scholar 

  15. Farber K, Kettenmann H (2006) Functional role of calcium signals for microglial function. Glia 54:656–665

    Article  PubMed  Google Scholar 

  16. Pocock JM, Kettenmann H (2007) Neurotransmitter receptors on microglia. Trends Neurosci 30:527–535

    Article  PubMed  CAS  Google Scholar 

  17. Agulhon C, Petravicz J, McMullen AB et al (2008) What is the role of astrocyte calcium in neurophysiology? Neuron 59:932–946

    Article  PubMed  CAS  Google Scholar 

  18. Nedergaard M, Rodriguez JJ, Verkhratsky A (2010) Glial calcium and diseases of the nervous system. Cell Calcium 47:140–149

    Article  PubMed  CAS  Google Scholar 

  19. Miyawaki A, Llopis J, Heim R et al (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887

    Article  PubMed  CAS  Google Scholar 

  20. Garaschuk O, Griesbeck O, Konnerth A (2007) Troponin C-based biosensors: a new family of genetically encoded indicators for in vivo calcium imaging in the nervous system. Cell Calcium 42:351–361

    Article  PubMed  CAS  Google Scholar 

  21. Mank M, Griesbeck O (2008) Genetically encoded calcium indicators. Chem Rev 108:1550–1564

    Article  PubMed  CAS  Google Scholar 

  22. Hires SA, Tian L, Looger LL (2008) Reporting neural activity with genetically encoded calcium indicators. Brain Cell Biol 36:69–86

    Article  PubMed  CAS  Google Scholar 

  23. Garaschuk O, Griesbeck O (2010) Monitoring calcium levels with genetically encoded indicators. In: Verkhratsky A, Petersen OH (eds) Neuromethods 43: calcium measurement methods. Humana, New York

    Google Scholar 

  24. Tsien RY, Pozzan T, Rink TJ (1982) Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J Cell Biol 94:325–334

    Article  PubMed  CAS  Google Scholar 

  25. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    PubMed  CAS  Google Scholar 

  26. Tsien RY (1988) Fluorescence measurement and photochemical manipulation of cytosolic free calcium. Trends Neurosci 11:419–424

    Article  PubMed  CAS  Google Scholar 

  27. Stosiek C, Garaschuk O, Holthoff K et al (2003) In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci USA 100:7319–7324

    Article  PubMed  CAS  Google Scholar 

  28. Tsien RY (1980) New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry 19:2396–2404

    Article  PubMed  CAS  Google Scholar 

  29. Naraghi M (1997) T-jump study of calcium binding kinetics of calcium chelators. Cell Calcium 22:255–268

    Article  PubMed  CAS  Google Scholar 

  30. Xu C (2000) Two-photon cross sections of indicators. In: Yuste R, Lanni F, Konnerth A (eds) Imaging neurons: a laboratory manual. Cold Spring Harbor, New York

    Google Scholar 

  31. Wokosin DL, Loughrey CM, Smith GL (2004) Characterization of a range of fura dyes with two-photon excitation. Biophys J 86:1726–1738

    Article  PubMed  CAS  Google Scholar 

  32. Tian L, Hires SA, Mao T et al (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6:875–881

    Article  PubMed  CAS  Google Scholar 

  33. Reiff DF, Ihring A, Guerrero G et al (2005) In vivo performance of genetically encoded indicators of neural activity in flies. J Neurosci 25:4766–4778

    Article  PubMed  CAS  Google Scholar 

  34. Mank M, Reiff DF, Heim N et al (2006) A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change. Biophys J 90:1790–1796

    Article  PubMed  CAS  Google Scholar 

  35. Horikawa K, Yamada Y, Matsuda T et al (2010) Spontaneous network activity visualized by ultrasensitive Ca2+ indicators, yellow Cameleon-Nano. Nat Methods 7:729–732

    Article  PubMed  CAS  Google Scholar 

  36. Eichhoff G, Kovalchuk Y, Varga Z et al (2010) In vivo Ca2+ imaging of the living brain using multi cell bolus loading technique. In: Verkhratsky A, Petersen OH (eds) Neuromethods 43: calcium measurement methods. Humana, New York

    Google Scholar 

  37. Wilms CD, Schmidt H, Eilers J (2006) Quantitative two-photon Ca2+ imaging via fluorescence lifetime analysis. Cell Calcium 40:73–79

    Article  PubMed  CAS  Google Scholar 

  38. Wilms CD, Eilers J (2007) Photo-physical properties of Ca2+-indicator dyes suitable for two-photon fluorescence-lifetime recordings. J Microsc 225:209–213

    Article  PubMed  CAS  Google Scholar 

  39. Nagai T, Yamada S, Tominaga T et al (2004) Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci USA 101:10554–10559

    Article  PubMed  CAS  Google Scholar 

  40. Mank M, Santos AF, Direnberger S et al (2008) A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nat Methods 5:805–811

    Article  PubMed  CAS  Google Scholar 

  41. Mao T, O'Connor DH, Scheuss V et al (2008) Characterization and subcellular targeting of GCaMP-type genetically-encoded calcium indicators. PLoS One 3:e1796

    Article  PubMed  Google Scholar 

  42. Tallini YN, Ohkura M, Choi BR et al (2006) Imaging cellular signals in the heart in vivo: cardiac expression of the high-signal Ca2+ indicator GCaMP2. Proc Natl Acad Sci USA 103:4753–4758

    Article  PubMed  CAS  Google Scholar 

  43. Neher E (1995) The use of fura-2 for estimating Ca2+ buffers and Ca2+ fluxes. Neuropharmacology 34:1423–1442

    Article  PubMed  CAS  Google Scholar 

  44. Heim N, Garaschuk O, Friedrich MW et al (2007) Improved calcium imaging in transgenic mice expressing a troponin-C based biosensor. Nat Methods 4:127–129

    Article  PubMed  CAS  Google Scholar 

  45. Wachowiak M, Cohen LB (2001) Representation of odorants by receptor neuron input to the mouse olfactory bulb. Neuron 32:723–735

    Article  PubMed  CAS  Google Scholar 

  46. Garaschuk O, Milos RI, Konnerth A (2006) Targeted bulk-loading of fluorescent indicators for two-photon brain imaging in vivo. Nat Protoc 1:380–386

    Article  PubMed  CAS  Google Scholar 

  47. Xu HT, Pan F, Yang G et al (2007) Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nat Neurosci 10:549–551

    Article  PubMed  CAS  Google Scholar 

  48. Jia H, Rochefort NL, Chen X et al (2010) Dendritic organization of sensory input to cortical neurons in vivo. Nature 464:1307–1312

    Article  PubMed  CAS  Google Scholar 

  49. Nagayama S, Zeng S, Xiong W et al (2007) In vivo simultaneous tracing and Ca2+ imaging of local neuronal circuits. Neuron 53:789–803

    Article  PubMed  CAS  Google Scholar 

  50. Nevian T, Helmchen F (2007) Calcium indicator loading of neurons using single-cell electroporation. Pflugers Arch 454:675–688

    Article  PubMed  CAS  Google Scholar 

  51. Kitamura K, Judkewitz B, Kano M et al (2008) Targeted patch-clamp recordings and single-cell electroporation of unlabeled neurons in vivo. Nat Methods 5:61–67

    Article  PubMed  CAS  Google Scholar 

  52. Judkewitz B, Rizzi M, Kitamura K et al (2009) Targeted single-cell electroporation of mammalian neurons in vivo. Nat Protoc 4:862–869

    Article  PubMed  CAS  Google Scholar 

  53. Kerr JN, Greenberg D, Helmchen F (2005) Imaging input and output of neocortical networks in vivo. Proc Natl Acad Sci USA 102:14063–14068

    Article  PubMed  CAS  Google Scholar 

  54. Tabata H, Nakajima K (2001) Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience 103:865–872

    Article  PubMed  CAS  Google Scholar 

  55. Tabata H, Nakajima K (2008) Labeling embryonic mouse central nervous system cells by in utero electroporation. Dev Growth Differ 50:507–511

    Article  PubMed  CAS  Google Scholar 

  56. Chesler AT, Le Pichon CE, Brann JH et al (2008) Selective gene expression by postnatal electroporation during olfactory interneuron neurogenesis. PLoS One 3:e1517

    Article  PubMed  Google Scholar 

  57. Klein RL, Hamby ME, Gong Y et al (2002) Dose and promoter effects of adeno-associated viral vector for green fluorescent protein expression in the rat brain. Exp Neurol 176:66–74

    Article  PubMed  CAS  Google Scholar 

  58. Dittgen T, Nimmerjahn A, Komai S et al (2004) Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo. Proc Natl Acad Sci USA 101:18206–18211

    Article  PubMed  CAS  Google Scholar 

  59. Teschemacher AG, Wang S, Lonergan T et al (2005) Targeting specific neuronal populations using adeno- and lentiviral vectors: applications for imaging and studies of cell function. Exp Physiol 90:61–69

    Article  PubMed  CAS  Google Scholar 

  60. Wong LF, Goodhead L, Prat C et al (2006) Lentivirus-mediated gene transfer to the central nervous system: therapeutic and research applications. Hum Gene Ther 17:1–9

    Article  PubMed  CAS  Google Scholar 

  61. Coura Rdos S, Nardi NB (2007) The state of the art of adeno-associated virus-based vectors in gene therapy. Virol J 4:99

    Article  PubMed  Google Scholar 

  62. Diez-Garcia J, Akemann W, Knopfel T (2007) In vivo calcium imaging from genetically specified target cells in mouse cerebellum. Neuroimage 34:859–869

    Article  PubMed  Google Scholar 

  63. Hendel T, Mank M, Schnell B et al (2008) Fluorescence changes of genetic calcium indicators and OGB-1 correlated with neural activity and calcium in vivo and in vitro. J Neurosci 28:7399–7411

    Article  PubMed  CAS  Google Scholar 

  64. Wallace DJ, Zum Alten Borgloh SM, Astori S et al (2008) Single-spike detection in vitro and in vivo with a genetic Ca2+ sensor. Nat Methods 5:797–804

    Article  PubMed  CAS  Google Scholar 

  65. Garaschuk O, Milos RI, Grienberger C et al (2006) Optical monitoring of brain function in vivo: from neurons to networks. Pflugers Arch 453:385–396

    Article  PubMed  CAS  Google Scholar 

  66. Nimmerjahn A, Kirchhoff F, Kerr JND et al (2004) Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat Methods 1:31–37

    Article  PubMed  CAS  Google Scholar 

  67. Kafitz KW, Meier SD, Stephan J et al (2008) Developmental profile and properties of sulforhodamine 101-labeled glial cells in acute brain slices of rat hippocampus. J Neurosci Methods 169:84–92

    Article  PubMed  CAS  Google Scholar 

  68. Johannssen HC, Helmchen F (2010) In vivo Ca2+ imaging of dorsal horn neuronal populations in mouse spinal cord. J Physiol 588:3397–3402

    Article  PubMed  CAS  Google Scholar 

  69. Kang J, Kang N, Yu Y et al (2010) Sulforhodamine 101 induces long-term potentiation of intrinsic excitability and synaptic efficacy in hippocampal CA1 pyramidal neurons. Neuroscience 169:1601–1609

    Article  PubMed  CAS  Google Scholar 

  70. Petzold GC, Albeanu DF, Sato TF et al (2008) Coupling of neural activity to blood flow in olfactory glomeruli is mediated by astrocytic pathways. Neuron 58:897–910

    Article  PubMed  CAS  Google Scholar 

  71. Hirrlinger PG, Scheller A, Braun C et al (2005) Expression of reef coral fluorescent proteins in the central nervous system of transgenic mice. Mol Cell Neurosci 30:291–303

    Article  PubMed  CAS  Google Scholar 

  72. Eichhoff G, Brawek B, Garaschuk O (2010) Microglial calcium signal acts as a rapid sensor of single neuron damage in vivo. Biochim Biophys Acta. doi:10.1016/j.bbamcr.2010.10.018

    Google Scholar 

  73. Nakai J, Ohkura M, Imoto K (2001) A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nat Biotechnol 19:137–141

    Article  PubMed  CAS  Google Scholar 

  74. Wellis DP, Scott JW (1990) Intracellular responses of identified rat olfactory bulb interneurons to electrical and odor stimulation. J Neurophysiol 64:932–947

    PubMed  CAS  Google Scholar 

  75. Buonviso N, Amat C, Litaudon P et al (2003) Rhythm sequence through the olfactory bulb layers during the time window of a respiratory cycle. Eur J Neurosci 17:1811–1819

    Article  PubMed  Google Scholar 

  76. Cang J, Isaacson JS (2003) In vivo whole-cell recording of odor-evoked synaptic transmission in the rat olfactory bulb. J Neurosci 23:4108–4116

    PubMed  CAS  Google Scholar 

  77. Tan J, Savigner A, Ma M et al (2010) Odor information processing by the olfactory bulb analyzed in gene-targeted mice. Neuron 65:912–926

    Article  PubMed  CAS  Google Scholar 

  78. Vucinic D, Cohen LB, Kosmidis EK (2006) Interglomerular center-surround inhibition shapes odorant-evoked input to the mouse olfactory bulb in vivo. J Neurophysiol 95:1881–1887

    Article  PubMed  Google Scholar 

  79. Tolhurst DJ, Smyth D, Thompson ID (2009) The sparseness of neuronal responses in ferret primary visual cortex. J Neurosci 29:2355–2370

    Article  PubMed  CAS  Google Scholar 

  80. Wolfe J, Houweling AR, Brecht M (2010) Sparse and powerful cortical spikes. Curr Opin Neurobiol 20:306–312

    Article  PubMed  CAS  Google Scholar 

  81. Lutcke H, Murayama M, Hahn T et al (2010) Optical recording of neuronal activity with a genetically-encoded calcium indicator in anesthetized and freely moving mice. Front Neural Circuits 4:9

    PubMed  Google Scholar 

  82. Boldogkoi Z, Balint K, Awatramani GB et al (2009) Genetically timed, activity-sensor and rainbow transsynaptic viral tools. Nat Methods 6:127–130

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank A. Weible, S. Kasperek, G. Heck, and K. Schoentag for technical assistance. This work was supported by grants from the Deutsche Forschungsgemeinschaft (SFB 596, GA 654/1-1, SFB 870), EU FP7, and the NIH NS DC005259-39.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fink, S. et al. (2011). In Vivo Functional Imaging of the Olfactory Bulb at Single-Cell Resolution. In: Fellin, T., Halassa, M. (eds) Neuronal Network Analysis. Neuromethods, vol 67. Humana Press. https://doi.org/10.1007/7657_2011_1

Download citation

  • DOI: https://doi.org/10.1007/7657_2011_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-632-6

  • Online ISBN: 978-1-61779-633-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics