Skip to main content

Differentiating Induced Pluripotent Stem Cells Toward Mesenchymal Stem/Stromal Cells

  • Protocol
  • First Online:
Induced Pluripotent Stem Cells and Human Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2549))

Abstract

Differentiating human induced pluripotent stem cells (iPSCs) into multipotent mesenchymal stem/stromal cells (MSCs) offers a renewable source of therapeutically invaluable cells. However, the process of MSC derivation from iPSCs suffers from an undesirably low efficiency. In this chapter, we present an optimized procedure to produce MSCs from human iPSCs with a high efficiency. The protocol depends on the generation of embryoid bodies (EBs) and requires the treatment of EBs with transforming growth factor beta 1 (TGF-β1). The resulting MSCs can be purified based on the expression of CD73, CD105, and CD90 markers and expanded for multiple passages without losing their characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DPBS:

Dulbecco’s phosphate buffered saline

EB:

Embryoid body

FACS:

Fluorescence-activated cell sorting

FBS:

Fetal bovine serum

iPSC:

Induced pluripotent stem cell

MSC:

Mesenchymal stem/stromal cell

TGF-β1:

Transforming growth factor beta 1

References

  1. Potten CS, Loeffler M (1990) Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110(4):1001–1020

    Article  CAS  Google Scholar 

  2. Jaenisch R, Young R (2008) Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132(4):567–582

    Article  CAS  Google Scholar 

  3. Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, Deans RJ, Krause DS, Keating A, International Society for Cellular T (2005) Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 7(5):393–395

    Article  CAS  Google Scholar 

  4. Kimelman N, Pelled G, Helm GA, Huard J, Schwarz EM, Gazit D (2007) Review: Gene- and stem cell-based therapeutics for bone regeneration and repair. Tissue Eng 13(6):1135–1150

    Article  CAS  Google Scholar 

  5. Keating A (2012) Mesenchymal stromal cells: new directions. Cell Stem Cell 10(6):709–716

    Article  CAS  Google Scholar 

  6. Ankrum J, Karp JM (2010) Mesenchymal stem cell therapy: two steps forward, one step back. Trends Mol Med 16(5):203–209

    Article  Google Scholar 

  7. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295

    Article  CAS  Google Scholar 

  8. Duscher D, Rennert RC, Januszyk M, Anghel E, Maan ZN, Whittam AJ, Perez MG, Kosaraju R, Hu MS, Walmsley GG, Atashroo D, Khong S, Butte AJ, Gurtner GC (2014) Aging disrupts cell subpopulation dynamics and diminishes the function of mesenchymal stem cells. Sci Rep 4:7144

    Article  CAS  Google Scholar 

  9. Kogut I, McCarthy SM, Pavlova M, Astling DP, Chen X, Jakimenko A, Jones KL, Getahun A, Cambier JC, Pasmooij AMG, Jonkman MF, Roop DR, Bilousova G (2018) High-efficiency RNA-based reprogramming of human primary fibroblasts. Nat Commun 9(1):745

    Article  CAS  Google Scholar 

  10. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  Google Scholar 

  11. Buccini S, Haider KH, Ahmed RP, Jiang S, Ashraf M (2012) Cardiac progenitors derived from reprogrammed mesenchymal stem cells contribute to angiomyogenic repair of the infarcted heart. Basic Res Cardiol 107(6):301

    Article  CAS  Google Scholar 

  12. Frobel J, Hemeda H, Lenz M, Abagnale G, Joussen S, Denecke B, Saric T, Zenke M, Wagner W (2014) Epigenetic rejuvenation of mesenchymal stromal cells derived from induced pluripotent stem cells. Stem Cell Rep 3(3):414–422

    Article  CAS  Google Scholar 

  13. Giuliani M, Oudrhiri N, Noman ZM, Vernochet A, Chouaib S, Azzarone B, Durrbach A, Bennaceur-Griscelli A (2011) Human mesenchymal stem cells derived from induced pluripotent stem cells down-regulate NK-cell cytolytic machinery. Blood 118(12):3254–3262

    Article  CAS  Google Scholar 

  14. Hynes K, Menicanin D, Mrozik K, Gronthos S, Bartold PM (2014) Generation of functional mesenchymal stem cells from different induced pluripotent stem cell lines. Stem Cells Dev 23(10):1084–1096

    Article  CAS  Google Scholar 

  15. Liu Y, Goldberg AJ, Dennis JE, Gronowicz GA, Kuhn LT (2012) One-step derivation of mesenchymal stem cell (MSC)-like cells from human pluripotent stem cells on a fibrillar collagen coating. PLoS One 7(3):e33225

    Article  CAS  Google Scholar 

  16. Villa-Diaz LG, Brown SE, Liu Y, Ross AM, Lahann J, Parent JM, Krebsbach PH (2012) Derivation of mesenchymal stem cells from human induced pluripotent stem cells cultured on synthetic substrates. Stem Cells 30(6):1174–1181

    Article  CAS  Google Scholar 

  17. Sheyn D, Ben-David S, Shapiro G, De Mel S, Bez M, Ornelas L, Sahabian A, Sareen D, Da X, Pelled G, Tawackoli W, Liu Z, Gazit D, Gazit Z (2016) Human induced pluripotent stem cells differentiate into functional mesenchymal stem cells and repair bone defects. Stem Cells Transl Med 5(11):1447–1460

    Article  CAS  Google Scholar 

  18. Brickman JM, Serup P (2017) Properties of embryoid bodies. Wiley Interdiscip Rev Dev Biol 6(2)

    Google Scholar 

  19. Xu J, Lamouille S, Derynck R (2009) TGF-beta-induced epithelial to mesenchymal transition. Cell Res 19(2):156–172

    Article  CAS  Google Scholar 

  20. Moustakas A, Heldin CH (2007) Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci 98(10):1512–1520

    Article  CAS  Google Scholar 

  21. Ghaneialvar H, Soltani L, Rahmani HR, Lotfi AS, Soleimani M (2018) Characterization and classification of mesenchymal stem cells in several species using surface markers for cell therapy purposes. Indian J Clin Biochem 33(1):46–52

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Gates Frontiers Fund and the Ehlers Danlos Center of Excellence at the University of Colorado Anschutz Medical Campus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganna Bilousova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

McGarvey, S.S., Ferreyros, M., Kogut, I., Bilousova, G. (2021). Differentiating Induced Pluripotent Stem Cells Toward Mesenchymal Stem/Stromal Cells. In: Turksen, K. (eds) Induced Pluripotent Stem Cells and Human Disease. Methods in Molecular Biology, vol 2549. Humana, New York, NY. https://doi.org/10.1007/7651_2021_383

Download citation

  • DOI: https://doi.org/10.1007/7651_2021_383

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2584-2

  • Online ISBN: 978-1-0716-2585-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics