Skip to main content

Generation of Transgenic Rats Using Lentiviral Vectors

  • Protocol
  • First Online:
Multiple Sclerosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1304))

Abstract

Transgenesis is a valuable tool with which to study different aspects of gene function in the context of the intact organism. During the last two decades a tremendous number of transgenic animals have been generated, and the continuous improvement of technology and the development of new systems have fostered their widespread application in biomedical research. Generally, transgenic animals are generated by introducing foreign DNA into fertilized oocytes, which can be achieved either by injecting recombinant DNA into the pronucleus or by transferring lentiviral particles into the perivitelline space. While mice remain the favored species in many laboratories, there are a number of applications where the use of rats is advantageous. One such research area is multiple sclerosis. Here, several experimental models are available that are closely mimicking the human disease, and it is possible to induce neuroinflammation by transferring pathogenic T cells which can then be studied by flow cytometry and 2-photon live imaging. Unlike for mice, the development of transgenic rats has encountered some hurdles in the past, e.g., due to a complicated reproductive biology and the frailty of the fertilized oocytes in vitro. In this chapter we provide a protocol describing how we manipulate single cell embryos in our lab in order to efficiently generate transgenic rats in a variety of different strains using lentiviral gene transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brenin D, Look J, Bader M et al (1997) Rat embryonic stem cells: a progress report. Transplant Proc 29:1761–1765

    Article  CAS  PubMed  Google Scholar 

  2. Jacob HJ, Lazar J, Dwinell MR et al (2010) Gene targeting in the rat: advances and opportunities. Trends Genet 26:510–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Smits BM, Cuppen E (2006) Rat genetics: the next episode. Trends Genet 22:232–240

    Article  CAS  PubMed  Google Scholar 

  4. Taurog JD, Dorris ML, Satumtira N et al (2009) Spondylarthritis in HLA-B27/human beta2-microglobulin-transgenic rats is not prevented by lack of CD8. Arthritis Rheum 60:1977–1984

    Article  CAS  PubMed  Google Scholar 

  5. Izsvak Z, Fröhlich J, Grabundzija I et al (2010) Generating knockout rats by transposon mutagenesis in spermatogonial stem cells. Nat Methods 7:443–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Herold MJ, Van Den Brandt J, Seibler J et al (2008) Inducible and reversible gene silencing by stable integration of an shRNA-encoding lentivirus in transgenic rats. Proc Natl Acad Sci U S A 105:18507–18512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li P, Tong C, Mehrian-Shai R et al (2008) Germline competent embryonic stem cells derived from rat blastocysts. Cell 135:1299–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kawamata M, Ochiya T (2010) Generation of genetically modified rats from embryonic stem cells. Proc Natl Acad Sci U S A 107:14223–14228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ponce De Leon V, Merillat AM, Tesson L et al (2014) Generation of TALEN-mediated GRdim knock-in rats by homologous recombination. PLoS One 9:e88146

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jaenisch R (1976) Germ line integration and Mendelian transmission of the exogenous Moloney leukemia virus. Proc Natl Acad Sci U S A 73:1260–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Costantini F, Lacy E (1981) Introduction of a rabbit beta-globin gene into the mouse germ line. Nature 294:92–94

    Article  CAS  PubMed  Google Scholar 

  12. Harbers K, Jahner D, Jaenisch R (1981) Microinjection of cloned retroviral genomes into mouse zygotes: integration and expression in the animal. Nature 293:540–542

    Article  CAS  PubMed  Google Scholar 

  13. Brinster RL, Chen HY, Warren R et al (1982) Regulation of metallothionein–thymidine kinase fusion plasmids injected into mouse eggs. Nature 296:39–42

    Article  CAS  PubMed  Google Scholar 

  14. Brinster RL, Chen HY, Trumbauer M et al (1981) Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs. Cell 27:223–231

    Article  CAS  PubMed  Google Scholar 

  15. Gordon JW, Scangos GA, Plotkin DJ et al (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci U S A 77:7380–7384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hammer RE, Pursel VG, Rexroad CE Jr et al (1985) Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315:680–683

    Article  CAS  PubMed  Google Scholar 

  17. Mullins JJ, Peters J, Ganten D (1990) Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. Nature 344:541–544

    Article  CAS  PubMed  Google Scholar 

  18. Naldini L, Blomer U, Gallay P et al (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267

    Article  CAS  PubMed  Google Scholar 

  19. Lois C, Hong EJ, Pease S et al (2002) Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295:868–872

    Article  CAS  PubMed  Google Scholar 

  20. Van Den Brandt J, Kwon SH, Hünig T et al (2005) Sustained pre-TCR expression in Notch1IC-transgenic rats impairs T cell maturation and selection. J Immunol 174:7845–7852

    Article  PubMed  Google Scholar 

  21. Van Den Brandt J, Lühder F, McPherson KG et al (2007) Enhanced glucocorticoid receptor signaling in T cells impacts thymocyte apoptosis and adaptive immune responses. Am J Pathol 170:1041–1053

    Article  PubMed  PubMed Central  Google Scholar 

  22. Danielyan L, Schäfer R, Von Ameln-Mayerhofer A et al (2011) Therapeutic efficacy of intranasally delivered mesenchymal stem cells in a rat model of Parkinson disease. Rejuvenation Res 14:3–16

    Article  CAS  PubMed  Google Scholar 

  23. Van Den Brandt J, Fischer HJ, Walter L et al (2010) Type 1 diabetes in BioBreeding rats is critically linked to an imbalance between Th17 and regulatory T cells and an altered TCR repertoire. J Immunol 185:2285–2294

    Article  PubMed  Google Scholar 

  24. Remy S, Nguyen TH, Menoret S et al (2010) The use of lentiviral vectors to obtain transgenic rats. Methods Mol Biol 597:109–125

    Article  CAS  PubMed  Google Scholar 

  25. Kumar M, Keller B, Makalou N et al (2001) Systematic determination of the packaging limit of lentiviral vectors. Hum Gene Ther 12:1893–1905

    Article  CAS  PubMed  Google Scholar 

  26. Van Den Brandt J, Wang D, Kwon SH et al (2004) Lentivirally generated eGFP-transgenic rats allow efficient cell tracking in vivo. Genesis 39:94–99

    Article  PubMed  Google Scholar 

  27. Filipiak WE, Saunders TL (2006) Advances in transgenic rat production. Transgenic Res 15:673–686

    Article  CAS  PubMed  Google Scholar 

  28. Gold R, Linington C, Lassmann H (2006) Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain 129:1953–1971

    Article  PubMed  Google Scholar 

  29. Tischner D, Weishaupt A, Van Den Brandt J et al (2006) Polyclonal expansion of regulatory T cells interferes with effector cell migration in a model of multiple sclerosis. Brain 129:2635–2647

    Article  PubMed  Google Scholar 

  30. Lodygin D, Odoardi F, Schläger C et al (2013) A combination of fluorescent NFAT and H2B sensors uncovers dynamics of T cell activation in real time during CNS autoimmunity. Nat Med 19:784–790

    Article  CAS  PubMed  Google Scholar 

  31. Si-Hoe SL, Wells S, Murphy D (2001) Production of transgenic rodents by the microinjection of cloned DNA into fertilized one-cell eggs. Mol Biotechnol 17:151–182

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Research Foundation (DFG) through SFB/TRR 43.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrike J. Fischer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Reichardt, H.M., Fischer, H.J. (2014). Generation of Transgenic Rats Using Lentiviral Vectors. In: Weissert, R. (eds) Multiple Sclerosis. Methods in Molecular Biology, vol 1304. Humana Press, New York, NY. https://doi.org/10.1007/7651_2014_107

Download citation

  • DOI: https://doi.org/10.1007/7651_2014_107

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2629-9

  • Online ISBN: 978-1-4939-2630-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics