Skip to main content

A High Content Imaging-Based Approach for Classifying Cellular Phenotypes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1052))

Abstract

Current methods to characterize cell–biomaterial interactions are population-based and rely on imaging or biochemical analysis of end-point biological markers. The analysis of stem cells in cultures is further challenged by the heterogeneous nature and divergent fates of stem cells, especially in complex, engineered microenvironments. Here, we describe a high content imaging-based platform capable of identifying cell subpopulations based on cell phenotype-specific morphological descriptors. This method can be utilized to identify microenvironment-responsive morphological descriptors, which can be used to parse cells from a heterogeneous cell population based on emergent phenotypes at the single-cell level and has been successfully deployed to forecast long-term cell lineage fates and screen regenerative phenotype-prescriptive biomaterials.

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Causa F, Netti PA, Ambrosio L (2007) A multi-functional scaffold for tissue regeneration: the need to engineer a tissue analogue. Biomaterials 28(34):5093–5099

    Article  PubMed  CAS  Google Scholar 

  2. Guarino V, Causa F, Ambrosio L (2007) Bioactive scaffolds for bone and ligament tissue. Expert Rev Med Devices 4(3):405–418

    Article  PubMed  CAS  Google Scholar 

  3. Pasquinelli G et al (2008) Mesenchymal stem cell interaction with a non-woven hyaluronan-based scaffold suitable for tissue repair. J Anat 213(5):520–530

    Article  PubMed  CAS  Google Scholar 

  4. Reed CR et al (2009) Composite tissue engineering on polycaprolactone nanofiber scaffolds. Ann Plast Surg 62(5):505–512

    Article  PubMed  CAS  Google Scholar 

  5. Shea LD et al (2000) Engineered bone development from a pre-osteoblast cell line on three-dimensional scaffolds. Tissue Eng 6(6):605–617

    Article  PubMed  CAS  Google Scholar 

  6. Weber N et al (2004) Small changes in the polymer structure influence the adsorption behavior of fibrinogen on polymer surfaces: validation of a new rapid screening technique. J Biomed Mater Res 68(3):496–503

    Article  Google Scholar 

  7. Flaim CJ, Chien S, Bhatia SN (2005) An extracellular matrix microarray for probing cellular differentiation. Nat Methods 2(2):119–125

    Article  PubMed  CAS  Google Scholar 

  8. Dittrich PS, Manz A (2006) Lab-on-a-chip: microfluidics in drug discovery. Nat Rev Drug Discov 5(3):210–218

    Article  PubMed  CAS  Google Scholar 

  9. Levsky JM, Singer RH (2003) Gene expression and the myth of the average cell. Trends Cell Biol 13(1):4–6

    Article  PubMed  CAS  Google Scholar 

  10. Vega SL et al (2012) High-content imaging-based screening of microenvironment-induced changes to stem cells. J Biomol Screen 17(9):1151–1162

    Article  PubMed  Google Scholar 

  11. Treiser MD et al (2010) Cytoskeleton-based forecasting of stem cell lineage fates. Proc Natl Acad Sci U S A 107(2):610–615

    Article  PubMed  CAS  Google Scholar 

  12. Liu E et al (2010) Parsing the early cytoskeletal and nuclear organizational cues that demarcate stem cell lineages. Cell Cycle 9(11):2108–2117

    Article  PubMed  CAS  Google Scholar 

  13. Vidi PA et al (2012) Interconnected contribution of tissue morphogenesis and the nuclear protein NuMA to the DNA damage response. J Cell Sci 125(Pt 2):350–361

    Article  PubMed  CAS  Google Scholar 

  14. McNamara LE et al (2011) Skeletal stem cell physiology on functionally distinct titania nanotopographies. Biomaterials 32(30):7403–7410

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was partially supported by NIH P41 EB001046 (RESBIO, Integrated Resources for Polymeric Biomaterials), Rutgers University Academic Excellence Fund, and NSF Stem Cell IGERT 0801620.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kim, J.J., Vega, S.L., Moghe, P.V. (2013). A High Content Imaging-Based Approach for Classifying Cellular Phenotypes. In: Turksen, K. (eds) Imaging and Tracking Stem Cells. Methods in Molecular Biology, vol 1052. Humana Press, Totowa, NJ. https://doi.org/10.1007/7651_2013_29

Download citation

  • DOI: https://doi.org/10.1007/7651_2013_29

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-558-3

  • Online ISBN: 978-1-62703-559-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics