Skip to main content

Propagation and Differentiation of Human Wharton’s Jelly Stem Cells on Three-Dimensional Nanofibrous Scaffolds

  • Protocol
  • First Online:
Stem Cell Nanotechnology

Abstract

Stem cells isolated from the Wharton’s jelly of the human umbilical cord (hWJSCs) are unique compared to other stem cell types as they lie in between embryonic stem cells (ESCs) and adult mesenchymal stem cells (MSCs) on the developmental map and share stemness markers of ESCs and MSCs. Yet, they do not induce tumorigenesis and are hypoimmunogenic and proliferative and fresh cell numbers can be harvested painlessly in abundance from discarded umbilical cords. Additionally, they secrete important soluble bioactive molecules from the interleukin and cell adhesion family, hyaluronic acid, collagen, glycosoaminoglycans, and chondroitin sulfate. Many of these molecules are involved in bone, cartilage, and joint repair. It has also been shown that hWJSCs attach, proliferate, and differentiate efficiently in the stem cell niches of three-dimensional matrices, particularly nanofibrous scaffolds. Thus, tissue constructs made up of hWJSCs and biodegradable nanofibrous scaffolds will facilitate clinical translation and improved functional outcome for arthritis, bone, and cartilage diseases. When applied in vivo, the hWJSCs from the tissue construct may improve repair either by differentiating into new chondrocytes or osteocytes and/or release of important factors that favor repair through paracrine functions. The nanofibrous scaffold is expected to provide the architecture and niches for the hWJSCs to perform and will later biodegrade encouraging engraftment. This chapter provides a step-by-step protocol for the preparation of such tissue constructs involving hWJSCs and nanofibrous scaffolds. The methodology also includes the targeted in vitro differentiation of the hWJSCs to osteogenic and chondrogenic lineages when attached to the nanofibrous scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bongso A, Fong CY, Gauthaman K (2008) Taking stem cells to the clinic: major challenges. J Cell Biochem 105:1352–1360

    Article  PubMed  CAS  Google Scholar 

  2. Gutierrez-Aranda I, Ramos-Mejia V, Bueno C, Munoz-Lopez M, Real PJ, Marcia A et al (2010) Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells 28:1568–1570

    Article  PubMed  Google Scholar 

  3. Martins-Taylor K, Xu RH (2012) Concise review: genomic stability of human induced pluripotent stem cells. Stem Cells 30:22–27

    Article  PubMed  CAS  Google Scholar 

  4. Fong CY, Gauthaman K, Bongso A (2009) Reproductive stem cells of embryonic origin: comparative properties and potential benefits of human embryonic stem cells and Wharton’s jelly stem cells. In: Simon C, Pellicer A (eds) Stem cells in human reproduction, 2nd edn. Informa Healthcare, New York, pp 136–149

    Chapter  Google Scholar 

  5. Ben-David U, Benvenisty N (2011) The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer 11:268–277

    Article  PubMed  CAS  Google Scholar 

  6. Weiss ML, Medicetty S, Bledsoe AR, Rachakatla RS, Choi M, Merchav S et al (2006) Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson’s disease. Stem Cells 24:781–792

    Article  PubMed  CAS  Google Scholar 

  7. Fong CY, Richards M, Manasi N, Biswas A, Bongso A (2007) Comparative growth behaviour and characterization of stem cells from human Wharton’s jelly. Reprod Biomed Online 15:708–718

    Article  PubMed  CAS  Google Scholar 

  8. Fong CY, Subramanian A, Biswas A, Gauthaman K, Srikanth P, Hande P et al (2010) Derivation efficiency, cell proliferation, frozen-thaw survival, ‘stemness’ properties, and differentiation of human Wharton’s jelly stem cells: their potential for concurrent banking with cord blood for regenerative medicine purposes. Reprod Biomed Online 21:391–401

    Article  PubMed  Google Scholar 

  9. Kikuchi-taura A, Taguchi A, Kanda T, Inoue T, Kasahara Y, Hirose H et al (2012) Human umbilical cord provides a significant source of unexpanded mesenchymal stromal cells. Cytotherapy 14:441–450

    Article  PubMed  CAS  Google Scholar 

  10. Gauthaman K, Fong CY, Suganya CA, Subramanian A, Biswas A, Choolani M et al (2012) Extra-embryonic human Wharton’s jelly stem cells do not induce tumorigenesis, unlike human embryonic stem cells. Reprod Biomed Online 24:235–246

    Article  PubMed  Google Scholar 

  11. Wang Y, Han ZB, Ma J, Zuo C, Geng J, Gong W et al (2012) A toxicity study of multiple-administration human umbilical cord mesenchymal stem cells in cynomolgus monkeys. Stem Cells Dev 21:1401–1408

    Article  PubMed  Google Scholar 

  12. Gauthaman K, Venugopal JR, Fong CY, Biswas A, Ramakrishna S, Bongso A (2011) Osteogenic differentiation of human Wharton’s jelly stem cells on nanofibrous substrates in vitro. Tissue Eng Part A 17:71–81

    Article  PubMed  CAS  Google Scholar 

  13. Fong CY, Subramanian A, Gauthaman K, Venugopal J, Biswas A, Ramakrishna S et al (2012) Human umbilical cord Wharton’s jelly stem cells undergo enhanced chondrogenic differentiation when grown on nanofibrous scaffolds and in a sequential two-stage culture medium environment. Stem Cell Rev 8:195–209

    Article  PubMed  CAS  Google Scholar 

  14. Fan CG, Zhang Q, Zhou J (2011) Therapeutic potentials of mesenchymal stem cells derived from human umbilical cord. Stem Cell Rev 7:195–207

    Article  PubMed  Google Scholar 

  15. Subramanian A, Gan SU, Ngo KS, Gauthaman K, Biswas A, Choolani M et al (2012) Human umbilical cord Wharton’s jelly mesenchymal stem cells do not transform to tumor-associated fibroblasts in the presence of breast and ovarian cancer cells unlike bone marrow mesenchymal stem cells. J Cell Biochem 113:1886–1895

    Article  PubMed  CAS  Google Scholar 

  16. Gauthaman K, Fong CY, Cheyyatraivendran S, Biswas A, Choolani M, Bongso A (2012) Human umbilical cord Wharton’s jelly stem cell (hWJSC) extracts inhibit cancer cell growth in vitro. J Cell Biochem 113:2027–2039

    Article  PubMed  CAS  Google Scholar 

  17. Fong CY, Gauthaman K, Cheyyatraivendran S, Lin HD, Biswas A, Bongso A (2012) Human umbilical cord Wharton’s jelly stem cells and its conditioned medium support hematopoietic stem cell expansion ex vivo. J Cell Biochem 113:658–668

    Article  PubMed  CAS  Google Scholar 

  18. Angelucci S, Marchisio M, Giuseppe FD, Pierdomenico L, Sulpizio M, Eleuterio E (2010) Proteome analysis of human Wharton’s jelly cells during in vitro expansion. Proteome Sci 8:18–25

    Article  PubMed  Google Scholar 

  19. Gauthaman K, Venugopal V, Fong CY, Peh SL, Ramakrishna S, Bongso A (2009) Nanofibrous substrates support colony formation and maintain stemness of human embryonic stem cells. J Cell Mol Med 13:3475–3484

    Article  PubMed  Google Scholar 

  20. Curtis A, Wilkinson C (2001) Nanotechniques and approaches in biotechnology. Trends Biotechnol 19:97–101

    Article  PubMed  CAS  Google Scholar 

  21. Venugopal J, Vadgama P, Sampath Kumar TS, Ramakrishna S (2007) Biocomposite nanofibres and osteoblasts for bone tissue engineering. Nanotechnology 18:1–8

    Article  Google Scholar 

  22. Venugopal J, Low S, Choon AT, Kumar TS, Ramakrishna S (2008) Mineralization of osteoblasts with electrospun collagen/hydroxyapatite nanofibers. J Mater Sci Mater Med 19:2039–2046

    Article  PubMed  CAS  Google Scholar 

  23. Venugopal J, Rajeswari R, Shayanti M, Low S, Bongso A, Dev VR et al (2012) Electrosprayed hydroxyapatite on polymer nanofibers to differentiate mesenchymal stem cells to osteogenesis. J Biomater Sci Polym Ed: Feb 22: 22370175

    Google Scholar 

  24. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  PubMed  CAS  Google Scholar 

  25. Ma PX, Zhang RY (2001) Microtubular architecture of biodegradable polymer scaffolds. J Biomed Mater Res 56:469–747

    Article  PubMed  CAS  Google Scholar 

  26. Cheng K, Kisaalita WS (2010) Exploring cellular adhesion and differentiation in a micro-/nano-hybrid polymer scaffold. Biotechnol Prog 26:838–846

    Article  PubMed  CAS  Google Scholar 

  27. Schwarz S, Koerber L, Elsaesser AF, Goldberg-Bockhorn E, Seitz AM, Dürselen L et al (2011) Decellularized cartilage matrix as a novel biomatrix for cartilage tissue engineering applications. Tissue Eng Part A 8:2935–2943

    Google Scholar 

  28. Gendreau MA, Krishnaswamy S, Mann KG (1989) The interaction of bone Gla protein (osteocalcin) with phospholipids: vesicles. J Biol Chem 264:6972–6978

    PubMed  CAS  Google Scholar 

  29. Data HK, Ng WF, Walker JA, Tuck SP, Varanasi SS (2008) The cell biology of bone metabolism. J Clin Pathol 61:577–587

    Article  Google Scholar 

  30. Zhang ZY, Teoh SH, Chong WS, Foo TT, Chng YC, Choolani M et al (2009) A biaxial rotating bioreactor for the culture of fetal mesenchymal stem cells for bone tissue engineering. Biomaterials 30:2694–2704

    Article  PubMed  CAS  Google Scholar 

  31. Causa F, Netti PA, Ambrosio L, Ciapetti G, Baldini N, Pagani S et al (2006) Poly-epsilon-caprolactone/hydroxyapatite composites for bone regeneration: in vitro characterization and human osteoblast response. J Biomed Mater Res A 76:151–162

    PubMed  CAS  Google Scholar 

  32. Brandt J, Henning S, Michler G, Hein W, Bernstein A, Schulz M (2010) Nanocrystalline hydroxyapatite for bone repair: an animal study. J Mater Sci Mater Med 21:283–294

    Article  PubMed  CAS  Google Scholar 

  33. Matsiko A, Levingstone TJ, O’Brien FJ, Gleeson JP (2010) Addition of hyaluronic acid improves cellular infiltration and promotes early-stage chondrogenesis in a collagen-based scaffold for cartilage tissue engineering. J Mech Behav Biomed Mater 11:41–52

    Article  Google Scholar 

  34. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  PubMed  CAS  Google Scholar 

  35. Petite H, Viateau V, Bensaıd W, Meunier A, Pollak C, Bourguignon M et al (2000) Tissue-engineered bone regeneration. Nat Biotechnol 18:929–930

    Article  Google Scholar 

  36. Fernandes LF, Costa MA, Fernandes MH, Toma H (2009) Osteoblastic behavior of human bone marrow cells cultured over adsorbed collagen layer, over surface of collagen gels, and inside collagen gels. Connect Tissue Res 50:336–345

    PubMed  CAS  Google Scholar 

  37. Ma Z, Kotaki M, Inai R, Ramakrishna S (2005) Potential of nanofiber matrix as tissue engineering scaffolds. Tissue Eng 11:101–119

    Article  PubMed  Google Scholar 

  38. Venugopal JR, Ma LL, Ramakrishna S (2005) Biocompatible nanofiber matrices for the engineering of a dermal substitute for skin regeneration. Tissue Eng 11:847–854

    Article  PubMed  CAS  Google Scholar 

  39. Fang B, Wan YZ, Tang TT, Gao C, Dai KR (2009) Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds. Tissue Eng Part A 15:1091–1098

    Article  PubMed  CAS  Google Scholar 

  40. Ko EK, Jeong SI, Rim NG, Lee YM, Shin H, Lee BK (2008) In vitro osteogenic differentiation of human mesenchymal stem cells and in vivo bone formation in composite nanofiber meshes. Tissue Eng Part A 14:2105–2119

    Article  PubMed  CAS  Google Scholar 

  41. Vynios DH, Papageorgakopoulou N, Sazakli H, Tsiganos CP (2001) The interactions of cartilage proteoglycans with collagens are determined by their structures. Biochimie 83:899–906

    Article  PubMed  CAS  Google Scholar 

  42. Bi W, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B (1999) Sox9 is required for cartilage formation. Nat Genet 22:85–89

    Article  PubMed  CAS  Google Scholar 

  43. Hattori T, Müller C, Gebhard S, Bauer E, Pausch F, Schlund B et al (2010) SOX9 is a major negative regulator of cartilage vascularization, bone marrow formation and endochondral ossification. Development 137:901–911

    Article  PubMed  CAS  Google Scholar 

  44. Mohler ER, Adam LP, McClelland P, Graham L, Hathaway DR (1997) Detection of osteopontin in calcified human aortic valves. Arterioscler Thromb Vasc Biol 17:547–552

    Article  PubMed  Google Scholar 

  45. Shin H, Zygourakis K, Farach-Carson MC, Yaszemski MJ, Mikos AG (2004) Modulation of differentiation and mineralization of marrow stromal cells cultured on biomimetic hydrogels modified with Arg-Gly-Asp containing peptides. J Biomed Mater Res A 69:535–543

    Article  PubMed  Google Scholar 

  46. Bonewald LF, Harris SE, Rosser J, Dallas MR, Dallas SL, Camacho NP et al (2003) Von Kossa staining alone is not sufficient to confirm that mineralization in vitro represents bone formation. Calcif Tissue Int 72:537–547

    Article  PubMed  CAS  Google Scholar 

  47. Hernando P, Antonio J, Reginato H, Schumacher R (1983) Alizarin red s staining as a screening test to detect calcium compounds in synovial fluid. Arthritis Rheum 26:191–200

    Article  Google Scholar 

  48. Rasweiler JJ, Chris J, Cretekos CC, Behringer RR (2009) Alcian Blue/Alizarin Red staining of cartilage and bone of short-tailed fruit bat (Carollia perspicillata). Cold Spring Harb Protoc. doi:10.1101/pdb.prot5166

  49. Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Kuo Y et al (2004) Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22:1330–1337

    Article  PubMed  Google Scholar 

  50. Hwang NS, Varghese S, Zhang Z, Elisseeff J (2006) Chondrogenic differentiation of human embryonic stem cell derived cells in arginine-glycine-aspartate-modified hydrogels. Tissue Eng 12:2695–2706

    Article  PubMed  CAS  Google Scholar 

  51. Li H, Haudenschild DR, Posey KL, Hecht JT, Di Cesare PE, Yik JH (2011) Comparative analysis with collagen type II distinguishes cartilage oligomeric protein as a primary TGFb-responsive gene. Osteoarthritis Cartilage 19:1246–1253

    Article  PubMed  CAS  Google Scholar 

  52. Ng LJ, Tam PP, Cheah KS (1993) Preferential expression of alternatively spliced mRNAs encoding type II procollagen with a cysteine-rich aminopropeptide in differentiating cartilage and nonchondrogenic tissues during early mouse development. Dev Biol 159:403–417

    Article  PubMed  CAS  Google Scholar 

  53. Akiyama H, Chaboissier MC, Martin JF, Schedl A, de Crombrugghe B (2002) The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev 16:2813–2828

    Article  PubMed  CAS  Google Scholar 

  54. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89:747–754

    Article  PubMed  CAS  Google Scholar 

  55. Yoshida CA, Yamamoto H, Fujita T, Furuichi T, Ito K, Inoue K et al (2004) Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog. Genes Dev 18:952–963

    Article  PubMed  CAS  Google Scholar 

  56. Cheng SL, Zhang SF, Avioli LV (1996) Expression of bone matrix proteins during dexamethasone-induced mineralization of human bone marrow stromal cells. J Cell Biochem 61:182–193

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the grant support provided by the National University of Singapore (R-174-000-122-112; R-174-000-129-112) and National Medical Research Council, Singapore (R-174-000-103-213; R-174-000-131-213), for their studies in this area.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gauthaman, K., Fong, CY., Venugopal, J.R., Biswas, A., Ramakrishna, S., Bongso, A. (2013). Propagation and Differentiation of Human Wharton’s Jelly Stem Cells on Three-Dimensional Nanofibrous Scaffolds. In: Turksen, K. (eds) Stem Cell Nanotechnology. Methods in Molecular Biology, vol 1058. Humana Press, Totowa, NJ. https://doi.org/10.1007/7651_2012_1

Download citation

  • DOI: https://doi.org/10.1007/7651_2012_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-570-5

  • Online ISBN: 978-1-62703-571-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics