Skip to main content

Multimodal Imaging and Theranostic Application of Disease-Directed Agents

  • Chapter
  • First Online:
Personalized Medicine with a Nanochemistry Twist

Abstract

Contrast agents have long helped researchers and physicians alike delineate boundaries, but new diagnostic information is always sought after. A new field of molecularly targeted CT agents hopes to fill this void and supply physicians with prognostic information to find better treatments for patients. Borrowing from drug delivery and design, nanoparticles and similar platforms are being explored to help visualize complex biologic processes with never before seen resolution and fidelity. We discuss the development of this field and feasibility of translating some of these prospects to the clinic. Advances in chemistry, molecular biology, and engineering have molded this field emphasizing the early detection and treatment of diseases at the molecular and cellular level. Myriads of nanomedicine platforms have been proposed and developed and tested in laboratories and in preclinical models. However, very few have been translated to clinical trials. It is therefore a critical issue to recognize the factors affecting their eventual application in human. Better understanding of biological and biophysical obstacles encountered by these agents is necessary. Toward this aim, we critically review our present understanding of the biological obstacles encountered by the nano-agents, which we hope will motivate more studies to tune these technologies for future translational and clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BBB:

Blood-brain barrier

BLM:

Bilayer lipid membrane

DCS:

Differential centrifugal sedimentation

ECM:

Extracellular matrix

ENM:

Engineered nanomaterial

EPR:

Enhanced permeability retention

HIFU:

High-intensity focused ultrasound

i.v.:

Intravenous

koff :

Dissociation rate constant

MPS:

Mononuclear phagocyte system

MS:

Mass spectrometry

NIPAM:

N-Isopropylacrylamide

NLS:

Nuclear localization signal

NMR:

Nuclear magnetic resonance

NP:

Nanoparticle(s)

PC:

Protein corona

PEG:

Polyethylene glycol

PS:

Polystyrene

QCM:

Quartz-crystal microbalance

RES:

Reticuloendothelial system

SWCNT:

Single-walled carbon nanotubes

Tf:

Transferrin

TfR:

Transferrin receptor

References

  1. Shin SJ, Beech JR, Kelly KA (2012) Targeted nanoparticles in imaging: paving the way for personalized medicine in the battle against cancer. Integr Biol (Camb) 5(1):29–42

    Article  Google Scholar 

  2. Pang T (2012) Theranostics, the 21st century bioeconomy and ‘one health’. Expert Rev Mol Diagn 12(8):807–809

    Article  CAS  Google Scholar 

  3. Lee DY, Li KC (2011) Molecular theranostics: a primer for the imaging professional. AJR Am J Roentgenol 197(2):318–324

    Article  Google Scholar 

  4. James ML, Gambhir SS (2012) A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev 92(2):897–965

    Article  CAS  Google Scholar 

  5. Pan D, Lanza GM, Wickline SA, Caruthers SD (2009) Nanomedicine: perspective and promises with ligand-directed molecular imaging. Eur J Radiol 70(2):274–285

    Article  Google Scholar 

  6. Alberti C (2012) From molecular imaging in preclinical/clinical oncology to theranostic applications in targeted tumor therapy. Eur Rev Med Pharmacol Sci 16(14):1925–1933

    CAS  Google Scholar 

  7. Wang LS, Chuang MC, Ho JA (2012) Nanotheranostics – a review of recent publications. Int J Nanomedicine 7:4679–4695

    CAS  Google Scholar 

  8. Lammers T, Aime S, Hennink WE, Storm G, Kiessling F (2011) Theranostic nanomedicine. Acc Chem Res 44(10):1029–1038

    Article  CAS  Google Scholar 

  9. Cabral H, Nishiyama N, Kataoka K (2011) Supramolecular nanodevices: from design validation to theranostic nanomedicine. Acc Chem Res 44(10):999–1008

    Article  CAS  Google Scholar 

  10. Kunjachan S, Jayapaul J, Mertens ME, Storm G, Kiessling F, Lammers T (2012) Theranostic systems and strategies for monitoring nanomedicine-mediated drug targeting. Curr Pharm Biotechnol 13(4):609–622

    Article  CAS  Google Scholar 

  11. Pan D, Caruthers SD, Chen J, Winter PM, SenPan A, Schmieder AH, Wickline SA, Lanza GM (2010) Nanomedicine strategies for molecular targets with MRI and optical imaging. Future Med Chem 2(3):471–490

    Article  CAS  Google Scholar 

  12. Lanza GM (2012) ICAM-1 and nanomedicine: nature’s doorway to the extravascular tissue realm. Arterioscler Thromb Vasc Biol 32(5):1070–1071

    Article  CAS  Google Scholar 

  13. Pan D, Pramanik M, Senpan A, Ghosh S, Wickline SA, Wang LV, Lanza GM (2010) Near infrared photoacoustic detection of sentinel lymph nodes with gold nanobeacons. Biomaterials 31(14):4088–4093

    Article  CAS  Google Scholar 

  14. Albanese A, Tang PS, Chan WC (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16

    Article  CAS  Google Scholar 

  15. Elsabahy M, Wooley KL (2012) Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 41(7):2545–2561

    Article  CAS  Google Scholar 

  16. Popovtzer R, Agarwal A, Kotov NA, Popovtzer A, Balter J, Carey TE, Kopelman R (2008) Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett 8(12):4593–4596

    Article  CAS  Google Scholar 

  17. Schlomka JP, Roessl E, Dorscheid R, Dill S, Martens G, Istel T, Bäumer C, Herrmann C, Steadman R, Zeitler G, Livne A, Proksa R (2008) Experimental feasibility of multi-energy photon-counting K-edge imaging in pre-clinical computed tomography. Phys Med Biol 53(15):4031–4047

    Article  CAS  Google Scholar 

  18. Brenner DJ (2010) Should we be concerned about the rapid increase in CT usage? Rev Environ Health 25(1):63–68

    Article  Google Scholar 

  19. Hamlin DJ, Burgener FA (1981) Positive and negative contrast agents in CT evaluation of the abdomen and pelvis. J Comput Tomogr 5(2):82–90

    Article  CAS  Google Scholar 

  20. Lanza GM, Pan D (2014) Molecular imaging with computed tomography. Contrast Media Mol Imaging 9(1):1–2

    Article  CAS  Google Scholar 

  21. Lee N, Choi SH, Hyeon T (2013) Nano-sized CT contrast agents. Adv Mater 25(19):641–660

    Article  Google Scholar 

  22. Pan D (2015) Next generation gene delivery approaches: recent progress and hurdles. Mol Pharm 12(2):299–300

    Article  CAS  Google Scholar 

  23. Pan D, Schirra CO, Wickline SA, Lanza GM (2014) Multicolor computed tomographic molecular imaging with noncrystalline high-metal-density nanobeacons. Contrast Media Mol Imaging 9(1):13–25

    Article  CAS  Google Scholar 

  24. Liu Y, Ai K, Lu L (2012) Nanoparticulate X-ray computed tomography contrast agents: from design validation to in vivo applications. Acc Chem Res 45(10):1817–1827

    Article  CAS  Google Scholar 

  25. Pysz MA, Gambhir SS, Willmann JK (2010) Molecular imaging: current status and emerging strategies. Clin Radiol 65(7):500–516

    Article  CAS  Google Scholar 

  26. Piechowiak EL et al (2015) Intravenous iodinated contrast agents amplify DNA radiation damage at CT. Radiology 275(3):692–697

    Article  Google Scholar 

  27. Kim D et al (2007) Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo computed tomography imaging. J Am Chem Soc 129(24):7661–7665

    Article  CAS  Google Scholar 

  28. Weber WA et al (2008) Technology insight: advances in molecular imaging and an appraisal of PET/CT scanning. Nat Clin Pract Oncol 5:160–170

    Article  CAS  Google Scholar 

  29. Reuveni T et al (2011) Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study. Int J Nanomedicine 6:2859–2864

    CAS  Google Scholar 

  30. Shilo M et al (2012) Nanoparticles as computed tomography contrast agents. Nanomedicine 7(2):257–259

    Article  CAS  Google Scholar 

  31. Kao HW et al (2014) Biological characterization of cetuximab-conjugated gold nanoparticles in a tumor animal model. Nanotechnology 25(29):1

    Article  Google Scholar 

  32. Mieszawska AJ et al (2013) Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol Pharm 10(3):831–847

    Article  CAS  Google Scholar 

  33. Kao HW et al (2013) Evaluation of EGFR-targeted radioimmuno-gold-nanoparticles as a theranostic agent in a tumor animal model. Bioorganic Med Chem Lett 23(11):3180–3185

    Article  CAS  Google Scholar 

  34. Rabin O et al (2006) An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat Mater 10(10):118–122

    Article  Google Scholar 

  35. Pan D et al (2010) Computed tomography in color: NanoK-enhanced spectral CT molecular imaging. Angew Chem Int Ed Engl 49(50):9635–9639

    Article  CAS  Google Scholar 

  36. Clark DP, Badea CT (2014) Micro-CT of rodents: state-of-the-art and future perspectives. Phys Med 30(6):619–634

    Article  CAS  Google Scholar 

  37. Peters S, Stahel RA (2014) Successes and limitations of targeted cancer therapy. In: Progress in tumor research, vol 41. Karger Medical and Scientific Publishers, Basel

    Google Scholar 

  38. Tapfer A, Braren R, Bech M, Willner M, Zanette I et al (2013) X-Ray phase-contrast CT of a pancreatic ductal adenocarcinoma mouse model. PLoS One 8(3), e58439

    Article  CAS  Google Scholar 

  39. Hernot S, Klibanov AL (2008) Microbubbles in ultrasound-triggered drug and gene delivery. Adv Drug Deliv Rev 60(10):1153–1166

    Article  CAS  Google Scholar 

  40. Cosgrove D (2006) Ultrasound contrast agents: an overview. Eur J Radiol 60(3):324–330

    Article  Google Scholar 

  41. Sirsi SR, Borden MA (2009) Microbubble compositions, properties and biomedical applications. Bubble Sci Eng Technol 1(1–2):3–17

    Article  CAS  Google Scholar 

  42. Lefor AT et al (1995) The effects of hyperthermia on vascular permeability in experimental liver metastasis. J Surg Oncol 28(4):297–300

    Article  Google Scholar 

  43. May J, Li SD (2013) Hyperthermia-induced drug targeting. Expert Opin Drug Deliv 10(4):511–527

    Article  CAS  Google Scholar 

  44. Frenkel V et al (2006) Delivery of liposomal doxorubicin (doxil) in a breast cancer tumor model: investigation of potential enhancement by pulsed-high intensity focused ultrasound exposure. Acad Radiol 13(4):469–479

    Article  Google Scholar 

  45. Wang T et al (2014) Ultrasound and microbubble guided drug delivery: mechanistic understanding and clinical implications. Curr Pharm Biotechnol 14(8):743–752

    Article  CAS  Google Scholar 

  46. Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA (2001) Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology 220(3):640–646

    Article  CAS  Google Scholar 

  47. Society of Diagnostic Medical Sonography (2015) Sound medicine: understanding ultrasound and its benefits. Society of Diagnostic Medical Sonography

    Google Scholar 

  48. Miller D, Smith N, Bailey M, Czarnota G, Hynynen K, Makin I (2012) Overview of therapeutic ultrasound applications and safety considerations. J Ultrasound Med 31(4):623–634

    Google Scholar 

  49. Miller DL (1987) A review of the ultrasonic bioeffects of microsonation, gas-body activation, and related cavitation-like phenomena. Ultrasound Med Biol 13(8):443–470

    Article  CAS  Google Scholar 

  50. Newman CM, Bettinger T (2007) Gene therapy progress and prospects: ultrasound for gene transfer. Gene Ther 14:465–475

    Article  CAS  Google Scholar 

  51. Robertson VJ, Baker KG (2001) A review of therapeutic ultrasound: effectiveness studies. Phys Ther 81(7):1339–1350

    CAS  Google Scholar 

  52. Wood AKW, Sehgal CM (2015) A review of Low-intensity ultrasound for cancer therapy. Ultrasound Med Biol 41(4):905–928

    Article  Google Scholar 

  53. Neisius A et al (2015) Shock wave lithotripsy: the new phoenix? World J Urol 33(2):213–221

    Article  Google Scholar 

  54. Grippaudo FR et al (2004) Ultrasound-assisted liposuction for the removal of siliconomas. Scand J Plast Reconstr Surg Hand Surg 38(1):21–26

    Article  Google Scholar 

  55. Shridharani SM, Broyles JM, Matarasso A (2014) Liposuction devices: technology update. Med Devices Evid Res 7:241–251

    Article  Google Scholar 

  56. Martin KH, Dayton PA (2013) Current status and prospects for microbubbles in ultrasound theranostics. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5(4):329–345. doi:10.1002/wnan.1219 PM

    Article  CAS  Google Scholar 

  57. Kang ST, Yeh CK (2012) Ultrasound microbubble contrast agents for diagnostic and therapeutic applications: current status and future design. Chang Gung Med J 35(2):125–139

    Google Scholar 

  58. Sirsi SR, Borden MA (2012) Advances in ultrasound mediated gene therapy using microbubble contrast agents. Theranostics 2(12):1208–1222

    Article  CAS  Google Scholar 

  59. Liu HL, Fan CH, Ting CY, Yeh CK (2014) Combining microbubbles and ultrasound for drug delivery to brain tumors: current progress and overview. Theranostics 4(4):432–444

    Article  Google Scholar 

  60. Liu HL et al (2014) Pharmacodynamic and therapeutic investigation of focused ultrasound-induced blood-brain barrier opening for enhanced temozolomide delivery in glioma treatment. PLoS One 9(12), e114311

    Article  Google Scholar 

  61. Claes L, Willie B (2007) The enhancement of bone regeneration by ultrasound. Prog Biophys Mol Biol 93:384–398

    Article  Google Scholar 

  62. Zhou S, Schmelz A, Seufferlein T, Li Y, Zhao J, Bachem MG (2004) Molecular mechanisms of low intensity pulsed ultrasound in human skin fibroblasts. J Biol Chem 279:54463–54469

    Article  CAS  Google Scholar 

  63. Yang MH et al (2010) Application of ultrasound stimulation in bone tissue engineering. Int J Stem Cells 3(2):74–79

    Article  Google Scholar 

  64. Nomikou N, Tiwari P, Trehan T, Gulati K, McHale AP (2011) Studies on neutral, cationic and biotinylated cationic microbubbles in enhancing ultrasound-mediated gene delivery in vitro and in vivo. Acta Biomater 8(3):1273–1280

    Article  Google Scholar 

  65. Sirsi SR, Hernandez SL, Zielinski L, Blomback H, Koubaa A, Synder M et al (2012) Polyplex-microbubble hybrids for ultrasound-guided plasmid DNA delivery to solid tumors. J Control Release 157:224–234

    Article  CAS  Google Scholar 

  66. Tung YS, Vlachos F, Feshitan JA, Borden MA, Konofagou EE (2011) The mechanism of interaction between focused ultrasound and microbubbles in blood-brain barrier opening in mice. J Acoust Soc Am 130:3059–3067

    Article  Google Scholar 

  67. Chadderdon SM, Kaul S (2010) Molecular imaging with contrast enhanced ultrasound. J Nucl Cardiol 17(4):667–677

    Article  Google Scholar 

  68. Lin CY, Pitt WG (2013) Acoustic droplet vaporization in biology and medicine. Biomed Res Int 2013:404361

    Google Scholar 

  69. Zhang M, Fabiilli ML, Haworth KJ et al (2011) Acoustic droplet vaporization for enhancement of thermal ablation by high intensity focused ultrasound. Acad Radiol 18(9):1123–1132

    Article  Google Scholar 

  70. Kiessling F et al (2014) Recent advances in molecular, multimodal and theranostic ultrasound imaging. Adv Drug Deliv Rev 72:15–27

    Article  CAS  Google Scholar 

  71. Dobrucki LW, Pan D, Smith AM (2015) Multiscale imaging of nanoparticle drug delivery. Curr Drug Targets 6(6):560–570

    Article  Google Scholar 

  72. Pan D, Kim B, Hu G, Gupta DS, Senpan A, Yang X, Schmieder A, Swain C, Wickline SA, Tomasson MH, Lanza GM (2015) A strategy for combating melanoma with oncogenic c-Myc inhibitors and targeted nanotherapy. Nanomedicine (Lond) 10(2):241–251

    Article  CAS  Google Scholar 

  73. Zhang R, Pan D, Cai X, Yang X, Senpan A, Allen JS, Lanza GM, Wang LV (2015) Ανβ3-targeted copper nanoparticles incorporating an Sn 2 lipase-labile fumagillin prodrug for photoacoustic neovascular imaging and treatment. Theranostics 5(2):124–133

    Article  Google Scholar 

  74. Misra SK, Ye M, Kim S, Pan D (2014) Highly efficient anti-cancer therapy using scorpion ‘NanoVenin’. Chem Commun (Camb) 50(87):13220–13223

    Article  CAS  Google Scholar 

  75. Misra SK, Ye M, Kim S, Pan D (2015) Defined nanoscale chemistry influences delivery of peptido-toxins for cancer therapy. PLoS One 10(6), e0125908

    Article  Google Scholar 

  76. Mukherjee P, Misra SK, Gryka MC, Chang HH, Tiwari S, Wilson WL, Scott JW, Bhargava R, Pan D (2015) Tunable luminescent carbon nanospheres with well-defined nanoscale chemistry for synchronized imaging and therapy. Small. doi:10.1002/smll.201500728

    Google Scholar 

  77. Soodgupta D, Pan D, Cui G, Senpan A, Yang X, Lu L, Weilbaecher KN, Prochownik EV, Lanza GM, Tomasson MH (2015) Small molecule MYC inhibitor conjugated to integrin-targeted nanoparticles extends survival in a mouse model of disseminated multiple myeloma. Mol Cancer Ther 14(6):1286–1294

    Article  CAS  Google Scholar 

  78. Misra SK, Jensen TW, Pan D (2015) Enriched inhibition of cancer and stem-like cancer cells via STAT-3 modulating niclocelles. Nanoscale 7(16):7127–7132

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipanjan Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Caffarini, J. et al. (2015). Multimodal Imaging and Theranostic Application of Disease-Directed Agents. In: Pan, D. (eds) Personalized Medicine with a Nanochemistry Twist. Topics in Medicinal Chemistry, vol 20. Springer, Cham. https://doi.org/10.1007/7355_2015_91

Download citation

Publish with us

Policies and ethics