Skip to main content

Role of 3D Structures in Understanding, Predicting, and Designing Molecular Interactions in the Chemokine Receptor Family

  • Chapter
  • First Online:
Chemokines

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 14))

Abstract

The recently solved crystallographic structures of two chemokine receptors, CXCR4 and CCR5, provided valuable insights into the molecular mechanisms of chemokine receptor function and interaction with various ligands. However, they did not answer all of the questions. It remains an important role of the computational community to complement and expand the structural insights into areas where experimental structure determination efforts have not yet succeeded, such as studying receptor functional states or their complexes with small molecule and protein ligands of different classes. In this chapter, we provide an overview of pre- and post-structure efforts in understanding, predicting, and designing chemokine receptor interactions with small molecules and peptides, chemokines, and HIV gp120 proteins, as well as structure-guided insights regarding chemokine receptor dimerization and the impact of structures on rational molecular design initiatives. As an inherently challenging family of GPCRs, chemokine receptors may only reveal their secrets when tackled by the efficient symbiosis of computational approaches with experimental structure determination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3D:

Three-dimensional

AUC:

Area under curve

BiFC:

Biomolecular fluorescence complementation

BRET:

Bioluminescence resonance energy transfer

CCR5:

CC chemokine receptor 5

CXCR4:

CXC chemokine receptor 4

ECL:

Extracellular loop

FRET:

Fluorescence resonance energy transfer

GPCR:

G-protein-coupled receptor

HIV:

Human immunodeficiency virus

NMR:

Nuclear magnetic resonance

PDB:

Protein data bank

ROC:

Receiver operating characteristic

SDF-1:

Stromal cell derived factor 1

TM:

Transmembrane

VLS:

Virtual ligand screening

WT:

Wild type

References

  1. Salon JA, Lodowski DT, Palczewski K (2011) The significance of G protein-coupled receptor crystallography for drug discovery. Pharmacol Rev 63:901–937

    CAS  Google Scholar 

  2. Sliwoski G, Kothiwale S, Meiler J, Lowe EW (2014) Computational methods in drug discovery. Pharmacol Rev 66:334–395

    CAS  Google Scholar 

  3. Jacobson KA, Costanzi S (2012) New insights for drug design from the X-ray crystallographic structures of G-protein-coupled receptors. Mol Pharmacol 82:361–371

    CAS  Google Scholar 

  4. Allen SJ, Crown SE, Handel TM (2007) Chemokine: receptor structure, interactions, and antagonism. Annu Rev Immunol 25:787–820

    CAS  Google Scholar 

  5. Contento RL, Molon B, Boularan C, Pozzan T, Manes S, Marullo S, Viola A (2008) CXCR4-CCR5: a couple modulating T cell functions. Proc Natl Acad Sci U S A 105:10101–10106

    CAS  Google Scholar 

  6. Koelink PJ, Overbeek SA, Braber S, de Kruijf P, Folkerts G, Smit MJ, Kraneveld AD (2012) Targeting chemokine receptors in chronic inflammatory diseases: an extensive review. Pharmacol Ther 133:1–18

    CAS  Google Scholar 

  7. Viola A, Luster AD (2008) Chemokines and their receptors: drug targets in immunity and inflammation. Annu Rev Pharmacol Toxicol 48:171–197

    CAS  Google Scholar 

  8. Berger EA, Murphy PM, Farber JM (1999) Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol 17:657–700

    CAS  Google Scholar 

  9. Scholten DJ, Canals M, Maussang D, Roumen L, Smit MJ, Wijtmans M, de Graaf C, Vischer HF, Leurs R (2011) Pharmacological modulation of chemokine receptor function. Br J Pharmacol 165:1617–1643

    Google Scholar 

  10. Wu Y, Yoder A (2009) Chemokine coreceptor signaling in HIV-1 infection and pathogenesis. PLoS Pathog 5:e1000520

    Google Scholar 

  11. Horuk R, Chitnis CE, Darbonne WC, Colby TJ, Rybicki A, Hadley TJ, Miller LH (1993) A receptor for the malarial parasite Plasmodium vivax: the erythrocyte chemokine receptor. Science 261:1182–1184

    CAS  Google Scholar 

  12. Bill RM, Henderson PJF, Iwata S, Kunji ERS, Michel H, Neutze R, Newstead S, Poolman B, Tate CG, Vogel H (2011) Overcoming barriers to membrane protein structure determination. Nat Biotech 29:335–340

    CAS  Google Scholar 

  13. Cherezov V, Abola E, Stevens RC (2010) Recent progress in the structure determination of GPCRs, a membrane protein family with high potential as pharmaceutical targets. Methods Mol Biol 654:141–168

    CAS  Google Scholar 

  14. Wu B, Chien EYT, Mol CD, Fenalti G, Liu W, Katritch V, Abagyan R, Brooun A, Wells P, Bi FC et al (2010) Structures of the CXCR4 Chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330:1066–1071

    CAS  Google Scholar 

  15. Tan Q, Zhu Y, Li J, Chen Z, Han GW, Kufareva I, Li T, Ma L, Fenalti G, Li J et al (2013) Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex. Science 341:1387–1390

    CAS  Google Scholar 

  16. Stevens RC, Cherezov V, Katritch V, Abagyan R, Kuhn P, Rosen H, Wuthrich K (2013) The GPCR Network: a large-scale collaboration to determine human GPCR structure and function. Nat Rev Drug Discov 12:25–34

    CAS  Google Scholar 

  17. Thoma G, Streiff MB, Kovarik J, Glickman F, Wagner T, Beerli C, Zerwes H-G (2008) Orally bioavailable isothioureas block function of the chemokine receptor CXCR4 in vitro and in vivo. J Med Chem 51:7915–7920

    CAS  Google Scholar 

  18. Oishi S, Fujii N (2012) Peptide and peptidomimetic ligands for CXC chemokine receptor 4 (CXCR4). Org Biomol Chem 10:5720–5731

    CAS  Google Scholar 

  19. Fenalti G, Giguere PM, Katritch V, Huang X-P, Thompson AA, Cherezov V, Roth BL, Stevens RC (2014) Molecular control of delta-opioid receptor signalling. Nature 506:191–196

    CAS  Google Scholar 

  20. Granier S, Manglik A, Kruse AC, Kobilka TS, Thian FS, Weis WI, Kobilka BK (2012) Structure of the delta-opioid receptor bound to naltrindole. Nature 485:400–404

    CAS  Google Scholar 

  21. Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK, Pardo L, Weis WI, Kobilka BK, Granier S (2012) Crystal structure of the [mu]-opioid receptor bound to a morphinan antagonist. Nature 485:321–326

    CAS  Google Scholar 

  22. Thompson AA, Liu W, Chun E, Katritch V, Wu H, Vardy E, Huang X-P, Trapella C, Guerrini R, Calo G et al (2012) Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic. Nature 485:395–399

    CAS  Google Scholar 

  23. Wu H, Wacker D, Mileni M, Katritch V, Han GW, Vardy E, Liu W, Thompson AA, Huang X-P, Carroll FI et al (2012) Structure of the human k-opioid receptor in complex with JDTic. Nature 485:327–332

    CAS  Google Scholar 

  24. White JF, Noinaj N, Shibata Y, Love J, Kloss B, Xu F, Gvozdenovic-Jeremic J, Shah P, Shiloach J, Tate CG et al (2013) Structure of the agonist-bound neurotensin receptor. Nature 490:508–513

    Google Scholar 

  25. Zhang C, Srinivasan Y, Arlow DH, Fung JJ, Palmer D, Zheng Y, Green HF, Pandey A, Dror RO, Shaw DE et al (2012) High-resolution crystal structure of human protease-activated receptor 1. Nature 492:387–392

    CAS  Google Scholar 

  26. Murakami M, Kouyama T (2008) Crystal structure of squid rhodopsin. Nature 453:363–367

    CAS  Google Scholar 

  27. Dorr P, Westby M, Dobbs S, Griffin P, Irvine B, Macartney M, Mori J, Rickett G, Smith-Burchnell C, Napier C et al (2005) Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity. Antimicrob Agents Chemother 49:4721–4732

    CAS  Google Scholar 

  28. Wood A, Armour D (2005) The discovery of the CCR5 receptor antagonist, UK-427,857, a new agent for the treatment of HIV infection and AIDS. Prog Med Chem 43:239–271

    CAS  Google Scholar 

  29. Hernanz-Falcon P, Rodriguez-Frade JM, Serrano A, Juan D, del Sol A, Soriano SF, Roncal F, Gomez L, Valencia A, Martinez-A C et al (2004) Identification of amino acid residues crucial for chemokine receptor dimerization. Nat Immunol 5:216–223

    CAS  Google Scholar 

  30. Issafras H, Angers S, Bulenger S, Blanpain C, Parmentier M, Labbé-Jullié C, Bouvier M, Marullo S (2002) Constitutive agonist-independent CCR5 oligomerization and antibody-mediated clustering occurring at physiological levels of receptors. J Biol Chem 277:34666–34673

    CAS  Google Scholar 

  31. Springael J-Y, Le Minh PN, Urizar E, Costagliola S, Vassart G, Parmentier M (2006) Allosteric modulation of binding properties between units of chemokine receptor homo- and hetero-oligomers. Mol Pharmacol 69:1652–1661

    CAS  Google Scholar 

  32. Abagyan R, Totrov M (1994) Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins. J Mol Biol 235:983–1002

    CAS  Google Scholar 

  33. Abagyan RA, Totrov MM, Kuznetsov DA (1994) Icm: a new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation. J Comp Chem 15:488–506

    CAS  Google Scholar 

  34. Connolly M (1983) Analytical molecular surface calculation. J Appl Crystallogr 16:548–558

    CAS  Google Scholar 

  35. Planesas JM, Perez-Nueno VI, Borrell JI, Teixido J (2012) Impact of the CXCR4 structure on docking-based virtual screening of HIV entry inhibitors. J Mol Graph Model 38:123–136

    CAS  Google Scholar 

  36. Muniz-Medina VM, Jones S, Maglich JM, Galardi C, Hollingsworth RE, Kazmierski WM, Ferris RG, Edelstein MP, Chiswell KE, Kenakin TP (2009) The relative activity of “Function Sparing” HIV-1 entry inhibitors on viral entry and CCR5 internalization: is allosteric functional selectivity a valuable therapeutic property? Mol Pharmacol 75:490–501

    CAS  Google Scholar 

  37. Thiele S, Steen A, Jensen PC, Mokrosinski J, Frimurer TM, Rosenkilde MM (2011) Allosteric and orthosteric sites in CC chemokine receptor (CCR5), a chimeric receptor approach. J Biol Chem 286:37543–37554

    CAS  Google Scholar 

  38. Horster S, Goebel FD (2006) Serious doubts on safety and efficacy of CCR5 antagonists. Infection 34:110–113

    CAS  Google Scholar 

  39. Choi W-T, Duggineni S, Xu Y, Huang Z, An J (2012) Drug discovery research targeting the CXC chemokine receptor 4 (CXCR4). J Med Chem 55:977–994

    CAS  Google Scholar 

  40. Debnath B, Xu S, Grande F, Garofalo A, Neamati N (2013) Small Molecule Inhibitors of CXCR4. Theranostics 3:47–75

    CAS  Google Scholar 

  41. Pease J, Horuk R (2012) Chemokine receptor antagonists. J Med Chem 55:9363–9392

    CAS  Google Scholar 

  42. De Clercq E (2010) Recent advances on the use of the CXCR4 antagonist plerixafor (AMD3100, Mozobil(TM)) and potential of other CXCR4 antagonists as stem cell mobilizers. Pharmacol Ther 128:509–518

    Google Scholar 

  43. Steinberg M, Silva M (2010) Plerixafor: a chemokine receptor-4 antagonist for mobilization of hematopoietic stem cells for transplantation after high-dose chemotherapy for non-hodgkin's lymphoma or multiple myeloma. Clin Ther 32:821–843

    CAS  Google Scholar 

  44. Fujii N, Oishi S, Hiramatsu K, Araki T, Ueda S, Tamamura H, Otaka A, Kusano S, Terakubo S, Nakashima H et al (2003) Molecular-size reduction of a potent CXCR4-chemokine antagonist using orthogonal combination of conformation- and sequence-based libraries. Angew Chem Int Ed 42:3251–3253

    CAS  Google Scholar 

  45. Gerlach LO, Skerlj RT, Bridger GJ, Schwartz TW (2001) Molecular interactions of cyclam and bicyclam non-peptide antagonists with the CXCR4 chemokine receptor. J Biol Chem 276:14153–14160

    CAS  Google Scholar 

  46. Rosenkilde MM, Gerlach L-O, Hatse S, Skerlj RT, Schols D, Bridger GJ, Schwartz TW (2007) Molecular mechanism of action of monocyclam versus bicyclam non-peptide antagonists in the CXCR4 chemokine receptor. J Biol Chem 282:27354–27365

    CAS  Google Scholar 

  47. Trent JO, Wang Z-X, Murray JL, Shao W, Tamamura H, Fujii N, Peiper SC (2003) Lipid bilayer simulations of CXCR4 with inverse agonists and weak partial agonists. J Biol Chem 278:47136–47144

    Google Scholar 

  48. Wong RSY, Bodart V, Metz M, Labrecque J, Bridger G, Fricker SP (2008) Comparison of the potential multiple binding modes of bicyclam, monocylam, and noncyclam small-molecule CXC chemokine receptor 4 inhibitors. Mol Pharmacol 74:1485–1495

    CAS  Google Scholar 

  49. Våbenø J, Nikiforovich GV, Marshall GR (2006) A minimalistic 3D pharmacophore model for cyclopentapeptide CXCR4 antagonists. Pept Sci 84:459–471

    Google Scholar 

  50. Våbenø J, Nikiforovich GV, Marshall GR (2006) Insight into the binding mode for cyclopentapeptide antagonists of the CXCR4 receptor. Chem Biol Drug Des 67:346–354

    Google Scholar 

  51. Kawatkar SP, Yan M, Gevariya H, Lim MY, Eisold S, Zhu X, Huang Z, An J (2011) Computational analysis of the structural mechanism of inhibition of chemokine receptor CXCR4 by small molecule antagonists. Exp Biol Med 236:844–850

    CAS  Google Scholar 

  52. Boulais PE, Dulude D, Cabana J, Heveker N, Escher E, Lavigne P, Leduc R (2009) Photolabeling identifies transmembrane domain 4 of CXCR4 as a T140 binding site. Biochem Pharmacol 78:1382–1390

    CAS  Google Scholar 

  53. Neves MAC, Simoes S, Sae Melo ML (2010) Ligand-guided optimization of CXCR4 homology models for virtual screening using a multiple chemotype approach. J Comput Aided Mol Des 24:1023–1033

    Google Scholar 

  54. Kufareva I, Rueda M, Katritch V, Stevens RC, Abagyan R (2011) Status of GPCR modeling and docking as reflected by community-wide GPCR Dock 2010 assessment. Structure 19:1108–1126

    CAS  Google Scholar 

  55. Debnath AK (2013) Rational design of HIV-1 entry inhibitors. In: Kortagere S (ed) In silico models for drug discovery. Humana Press, pp 185–204. doi:10.1007/978-1-62703-342-8_13

  56. Kooistra AJ, Leurs R, Esch IJP, Graaf C (2014) From three-dimensional GPCR structure to rational ligand discovery. In: Filizola M (ed) G protein-coupled receptors – modeling and simulation. Springer, Netherlands, pp 129–157

    Google Scholar 

  57. Roumen L, Scholten DJ, de Kruijf P, de Esch IJP, Leurs R, de Graaf C (2012) C(X)CR in silico: computer-aided prediction of chemokine receptor-ligand interactions. Drug Discov Today Technol 9:e281–e291

    CAS  Google Scholar 

  58. Li J, Edwards PC, Burghammer M, Villa C, Schertler GFX (2004) Structure of bovine rhodopsin in a trigonal crystal form. J Mol Biol 343:1409–1438

    CAS  Google Scholar 

  59. Carlsson J, Coleman RG, Setola V, Irwin JJ, Fan H, Schlessinger A, Sali A, Roth BL, Shoichet BK (2011) Ligand discovery from a dopamine D3 receptor homology model and crystal structure. Nat Chem Biol 7:769–778

    CAS  Google Scholar 

  60. Fan H, Irwin JJ, Webb BM, Klebe G, Shoichet BK, Sali A (2009) Molecular docking screens using comparative models of proteins. J Chem Inf Model 49:2512–2527

    CAS  Google Scholar 

  61. Garcia-Perez J, Rueda P, Alcami J, Rognan D, Arenzana-Seisdedos F, Lagane B, Kellenberger E (2011) Allosteric model of maraviroc binding to CC chemokine receptor 5 (CCR5). J Biol Chem 286:33409–33421

    CAS  Google Scholar 

  62. Katritch V, Rueda M, Lam PC-H, Yeager M, Abagyan R (2010) GPCR 3D homology models for ligand screening: lessons learned from blind predictions of adenosine A2a receptor complex. Proteins 78:197–211

    CAS  Google Scholar 

  63. Kennedy DP, McRobb FM, Leonhardt SA, Purdy M, Figler H, Marshall MA, Chordia M, Figler RA, Linden J, Abagyan R et al (2013) The second extracellular loop of the adenosine A1 receptor mediates activity of allosteric enhancers. Mol Pharmacol 85(2):301–309

    Google Scholar 

  64. McRobb FM, Capuano B, Crosby IT, Chalmers DK, Yuriev E (2010) Homology modeling and docking evaluation of aminergic G protein-coupled receptors. J Chem Inf Model 50:626–637

    CAS  Google Scholar 

  65. Mysinger MM, Weiss DR, Ziarek JJ, Gravel S, Doak AK, Karpiak J, Heveker N, Shoichet BK, Volkman BF (2012) Structure-based ligand discovery for the protein-protein interface of chemokine receptor CXCR4. Proc Natl Acad Sci U S A 109:5517–5522

    CAS  Google Scholar 

  66. Kufareva I, Katritch V, Participants of GPCR Dock, Stevens RC, Abagyan R (2014) Advances in GPCR modeling evaluated by the GPCR Dock 2013 assessment: meeting new challenges. Structure 22(8):1120–1139

    Google Scholar 

  67. Michino M, Abola E, Participants GD, Brooks CL, Dixon JS, Moult J, Stevens RC (2009) Community-wide assessment of GPCR structure modelling and ligand docking: GPCR Dock 2008. Nat Rev Drug Discov 8:455–463

    Google Scholar 

  68. Clark R, Webster-Clark D (2008) Managing bias in ROC curves. J Comput Aided Mol Des 22:141–146

    CAS  Google Scholar 

  69. Jain A, Nicholls A (2008) Recommendations for evaluation of computational methods. J Comput Aided Mol Des 22:133–139

    CAS  Google Scholar 

  70. Katritch V, Rueda M, Abagyan R (2012) Ligand-guided receptor optimization. Methods Mol Biol 857:189–205

    CAS  Google Scholar 

  71. Brooks B, Karplus M (1983) Harmonic dynamics of proteins: normal modes and fluctuations in bovine pancreatic trypsin inhibitor. Proc Natl Acad Sci U S A 80:6571–6575

    CAS  Google Scholar 

  72. Dobbins SE, Lesk VI, Sternberg MJ (2008) Insights into protein flexibility: the relationship between normal modes and conformational change upon protein–protein docking. Proc Natl Acad Sci U S A 105:10390–10395

    CAS  Google Scholar 

  73. Hayward S, de Groot BL (2008) Normal modes and essential dynamics. Methods Mol Biol 443:89–106

    CAS  Google Scholar 

  74. Rueda M, Bottegoni G, Abagyan R (2009) Consistent improvement of cross-docking results using binding site ensembles generated with elastic network normal modes. J Chem Inf Model 49(3):716–725

    CAS  Google Scholar 

  75. Tama F, Miyashita O, Brooks CL 3rd (2004) Flexible multi-scale fitting of atomic structures into low-resolution electron density maps with elastic network normal mode analysis. J Mol Biol 337:985–999

    CAS  Google Scholar 

  76. Okuno Y, Tamon A, Yabuuchi H, Niijima S, Minowa Y, Tonomura K, Kunimoto R, Feng C (2008) GLIDA: GPCR–ligand database for chemical genomics drug discovery–database and tools update. Nucleic Acids Res 36:907–912

    Google Scholar 

  77. Perez-Nueno VI, Ritchie DW, Rabal O, Pascual R, Borrell JI, Teixido J (2008) Comparison of ligand-based and receptor-based virtual screening of HIV entry inhibitors for the CXCR4 and CCR5 receptors using 3D ligand shape matching and ligand-receptor docking. J Chem Inf Model 48:509–533

    CAS  Google Scholar 

  78. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    CAS  Google Scholar 

  79. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    CAS  Google Scholar 

  80. McGann M (2011) FRED pose prediction and virtual screening accuracy. J Chem Inf Model 51:578–596

    CAS  Google Scholar 

  81. Perez-Nueno VI, Pettersson S, Ritchie DW, Borrell JI, Teixido J (2009) Discovery of novel HIV entry inhibitors for the CXCR4 receptor by prospective virtual screening. J Chem Inf Model 49:810–823

    CAS  Google Scholar 

  82. Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD (2003) Improved protein-ligand docking using GOLD. Proteins 52:609–623

    CAS  Google Scholar 

  83. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    CAS  Google Scholar 

  84. Montes M, Miteva MA, Villoutreix BO (2007) Structure-based virtual ligand screening with LigandFit: pose prediction and enrichment of compound collections. Proteins Struct Funct Bioinformat 68:712–725

    CAS  Google Scholar 

  85. Karaboga AS, Planesas JM, Petronin F, Teixido J, Souchet M, Perez-Nueno VI (2013) Highly specific and sensitive pharmacophore model for identifying CXCR4 antagonists. Comparison with docking and shape-matching virtual screening performance. J Chem Inform Model 53:1043–1056

    CAS  Google Scholar 

  86. Kolb P, Rosenbaum DM, Irwin JJ, Fung JJ, Kobilka BK, Shoichet BK (2009) Structure-based discovery of b2-adrenergic receptor ligands. Proc Natl Acad Sci U S A 106:6843–6848

    CAS  Google Scholar 

  87. Weiss DR, Ahn S, Sassano MF, Kleist A, Zhu X, Strachan R, Roth BL, Lefkowitz RJ, Shoichet BK (2013) Conformation guides molecular efficacy in docking screens of activated b2 adrenergic G protein coupled receptor. ACS Chem Biol 8:1018–1026

    CAS  Google Scholar 

  88. Carlsson J, Yoo L, Gao Z-G, Irwin JJ, Shoichet BK, Jacobson KA (2010) Structure-based discovery of A2A adenosine receptor ligands. J Med Chem 53:3748–3755

    CAS  Google Scholar 

  89. Katritch V, Jaakola V-P, Lane JR, Lin J, Ijzerman AP, Yeager M, Kufareva I, Stevens RC, Abagyan R (2010) Structure-based discovery of novel chemotypes for adenosine A2A receptor antagonists. J Med Chem 53(4):1799–1809

    CAS  Google Scholar 

  90. Lane JR, Chubukov P, Liu W, Canals M, Cherezov V, Abagyan R, Stevens RC, Katritch V (2013) Structure-based ligand discovery targeting orthosteric and allosteric pockets of dopamine receptors. Mol Pharmacol 84:794–807

    CAS  Google Scholar 

  91. Kruse AC, Weiss DR, Rossi M, Hu J, Hu K, Eitel K, Gmeiner P, Wess J, Kobilka BK, Shoichet BK (2013) Muscarinic receptors as model targets and antitargets for structure-based ligand discovery. Mol Pharmacol 84:528–540

    CAS  Google Scholar 

  92. Vinader V, Ahmet DS, Ahmed MS, Patterson LH, Afarinkia K (2013) Discovery and computer aided potency optimization of a novel class of small molecule CXCR4 antagonists. PLoS One 8:e78744

    CAS  Google Scholar 

  93. Kim J, Yip MLR, Shen X, Li H, Hsin L-YC, Labarge S, Heinrich EL, Lee W, Lu J, Vaidehi N (2012) Identification of anti-malarial compounds as novel antagonists to chemokine receptor CXCR4 in pancreatic cancer cells. PLoS One 7:e31004

    CAS  Google Scholar 

  94. Liang Z, Zhan W, Zhu A, Yoon Y, Lin S, Sasaki M, Klapproth J-MA, Yang H, Grossniklaus HE, Xu J et al (2012) Development of a unique small molecule modulator of CXCR4. PLoS One 7:e34038

    CAS  Google Scholar 

  95. Zhan W, Liang Z, Zhu A, Kurtkaya S, Shim H, Snyder JP, Liotta DC (2007) Discovery of small molecule CXCR4 antagonists. J Med Chem 50:5655–5664

    CAS  Google Scholar 

  96. Truax VM, Zhao H, Katzman BM, Prosser AR, Alcaraz AA, Saindane MT, Howard RB, Culver D, Arrendale RF, Gruddanti PR et al (2013) Discovery of tetrahydroisoquinoline-based CXCR4 antagonists. ACS Med Chem Lett 4:1025–1030

    CAS  Google Scholar 

  97. Mungalpara J, Zachariassen ZG, Thiele S, Rosenkilde MM, Vabeno J (2013) Structure-activity relationship studies of the aromatic positions in cyclopentapeptide CXCR4 antagonists. Org Biomol Chem 11:8202–8208

    CAS  Google Scholar 

  98. Inokuchi E, Oishi S, Kubo T, Ohno H, Shimura K, Matsuoka M, Fujii N (2011) Potent CXCR4 antagonists containing amidine type peptide bond isosteres. ACS Med Chem Lett 2:477–480

    CAS  Google Scholar 

  99. Kobayashi K, Oishi S, Hayashi R, Tomita K, Kubo T, Tanahara N, Ohno H, Yoshikawa Y, Furuya T, Hoshino M et al (2012) Structure-activity relationship study of a CXC chemokine receptor type 4 antagonist, FC131, using a series of alkene dipeptide isosteres. J Med Chem 55:2746–2757

    CAS  Google Scholar 

  100. Mungalpara J, Thiele S, Eriksen O, Eksteen J, Rosenkilde MM, Vabeno J (2012) Rational design of conformationally constrained cyclopentapeptide antagonists for C-X-C chemokine receptor 4 (CXCR4). J Med Chem 55:10287–10291

    CAS  Google Scholar 

  101. Demmer O, Dijkgraaf I, Schumacher U, Marinelli L, Cosconati S, Gourni E, Wester H-J, Kessler H (2011) Design, synthesis, and functionalization of dimeric peptides targeting chemokine receptor CXCR4. J Med Chem 54:7648–7662

    CAS  Google Scholar 

  102. Aboye TL, Ha H, Majumder S, Christ F, Debyser Z, Shekhtman A, Neamati N, Camarero JA (2012) Design of a novel cyclotide-based CXCR4 antagonist with anti-human immunodeficiency virus (HIV)-1 activity. J Med Chem 55:10729–10734

    CAS  Google Scholar 

  103. Kazmierski W, Bifulco N, Yang H, Boone L, DeAnda F, Watson C, Kenakin T (2003) Recent progress in discovery of small-molecule CCR5 chemokine receptor ligands as HIV-1 inhibitors. Bioorg Med Chem 11:2663–2676

    CAS  Google Scholar 

  104. Labrecque J, Metz M, Lau G, Darkes MC, Wong RSY, Bogucki D, Carpenter B, Chen G, Li T, Nan S et al (2011) HIV-1 entry inhibition by small-molecule CCR5 antagonists: A combined molecular modeling and mutant study using a high-throughput assay. Virology 413:231–243

    CAS  Google Scholar 

  105. Maeda K, Das D, Ogata-Aoki H, Nakata H, Miyakawa T, Tojo Y, Norman R, Takaoka Y, Ding J, Arnold GF et al (2006) Structural and molecular interactions of CCR5 inhibitors with CCR5. J Biol Chem 281:12688–12698

    CAS  Google Scholar 

  106. Seibert C, Ying W, Gavrilov S, Tsamis F, Kuhmann SE, Palani A, Tagat JR, Clader JW, McCombie SW, Baroudy BM et al (2006) Interaction of small molecule inhibitors of HIV-1 entry with CCR5. Virology 349:41–54

    CAS  Google Scholar 

  107. Finke PE, Oates B, Mills SG, MacCoss M, Malkowitz L, Springer MS, Gould SL, DeMartino JA, Carella A, Carver G et al (2001) Antagonists of the human CCR5 receptor as anti-HIV-1 agents. Part 4: synthesis and structure-activity relationships for 1-[N-(Methyl)-N-(phenylsulfonyl)amino]-2-(phenyl)-4-(4-(N-(alkyl)-N-(benzyloxycarbonyl)amino)piperidin-1-yl)butanes. Bioorg Med Chem Lett 11:2475–2479

    CAS  Google Scholar 

  108. Berro R, Yasmeen A, Abrol R, Trzaskowski B, Abi-Habib S, Grunbeck A, Lascano D, Goddard WA, Klasse PJ, Sakmar TP et al (2013) Use of G-protein-coupled and -uncoupled CCR5 receptors by CCR5 inhibitor-resistant and -sensitive human immunodeficiency virus type 1 variants. J Virol 87:6569–6581

    CAS  Google Scholar 

  109. Abrol R, Griffith AR, Bray JK, Goddard WA III (2012) Structure prediction of G protein-coupled receptors and their ensemble of functionally important conformations. In: Vaidehi N, Klein-Seetharaman J (eds) Membrane protein structure and dynamics. Humana Press, pp 237–254. doi:10.1007/978-1-62703-023-6_14

  110. Kothandan G, Gadhe CG, Cho SJ (2012) Structural Insights from binding poses of CCR2 and CCR5 with clinically important antagonists: a combined in silico study. PLoS One 7:e32864

    CAS  Google Scholar 

  111. Lagane B, Garcia-Perez J, Kellenberger E (2012) Modeling the allosteric modulation of CCR5 function by Maraviroc. Drug Discov Today Technol 10:e297–e305

    Google Scholar 

  112. Strizki JM, Xu S, Wagner NE, Wojcik L, Liu J, Hou Y, Endres M, Palani A, Shapiro S, Clader JW et al (2001) SCH-C (SCH 351125), an orally bioavailable, small molecule antagonist of the chemokine receptor CCR5, is a potent inhibitor of HIV-1 infection in vitro and in vivo. Proc Natl Acad Sci U S A 98:12718–12723

    CAS  Google Scholar 

  113. Watson C, Jenkinson S, Kazmierski W, Kenakin T (2005) The CCR5 receptor-based mechanism of action of 873140, a potent allosteric noncompetitive HIV entry inhibitor. Mol Pharmacol 67:1268–1282

    CAS  Google Scholar 

  114. Maeda K, Nakata H, Koh Y, Miyakawa T, Ogata H, Takaoka Y, Shibayama S, Sagawa K, Fukushima D, Moravek J et al (2004) Spirodiketopiperazine-Based CCR5 inhibitor which preserves CC-chemokine/CCR5 interactions and exerts potent activity against R5 human immunodeficiency virus type 1 in vitro. J Virol 78:8654–8662

    CAS  Google Scholar 

  115. Kellenberger E, Springael J-Y, Parmentier M, Hachet-Haas M, Galzi J-L, Rognan D (2007) Identification of nonpeptide CCR5 receptor agonists by structure-based virtual screening. J Med Chem 50:1294–1303

    CAS  Google Scholar 

  116. Liu Y, Zhou E, Yu K, Zhu J, Zhang Y, Xie X, Li J, Jiang H (2008) Discovery of a novel CCR5 antagonist lead compound through fragment assembly. Molecules 13:2426–2441

    CAS  Google Scholar 

  117. Song M, Breneman CM, Sukumar N (2004) Three-dimensional quantitative structure-activity relationship analyses of piperidine-based CCR5 receptor antagonists. Bioorg Med Chem 12:489–499

    CAS  Google Scholar 

  118. Xu Y, Liu H, Niu C, Luo C, Luo X, Shen J, Chen K, Jiang H (2004) Molecular docking and 3D QSAR studies on 1-amino-2-phenyl-4-(piperidin-1-yl)-butanes based on the structural modeling of human CCR5 receptor. Bioorg Med Chem 12:6193–6208

    CAS  Google Scholar 

  119. Zhuo Y, Kong R, Cong X-J, Chen W-Z, Wang C-X (2008). Three-dimensional QSAR analyses of 1,3,4-trisubstituted pyrrolidine-based CCR5 receptor inhibitors. Eur J Med Chem 43:2724–2734

    Google Scholar 

  120. Gadhe CG, Kothandan G, Cho SJ (2013) Binding site exploration of CCR5 using in silico methodologies: a 3D-QSAR approach. Arch Pharm Res 36:6–31

    CAS  Google Scholar 

  121. Metz M, Bourque E, Labrecque J, Danthi SJ, Langille J, Harwig C, Yang W, Darkes MC, Lau G, Santucci Z et al (2011) Prospective CCR5 small molecule antagonist compound design using a combined mutagenesis/modeling approach. J Am Chem Soc 133:16477–16485

    CAS  Google Scholar 

  122. Paavola CD, Hemmerich S, Grunberger D, Polsky I, Bloom A, Freedman R, Mulkins M, Bhakta S, McCarley D, Wiesent L et al (1998) Monomeric monocyte chemoattractant protein-1 (MCP-1) binds and activates the MCP-1 receptor CCR2B. J Biol Chem 273:33157–33165

    CAS  Google Scholar 

  123. Rajarathnam K, Sykes B, Kay C, Dewald B, Geiser T, Baggiolini M, Clark-Lewis I (1994) Neutrophil activation by monomeric interleukin-8. Science 264:90–92

    CAS  Google Scholar 

  124. Monteclaro FS, Charo IF (1996) The amino-terminal extracellular domain of the MCP-1 receptor, but not the RANTES/MIP-1a receptor, confers chemokine selectivity: evidence for a two-step mechanism fir MCP-1 receptor activation. J Biol Chem 271:19084–19092

    CAS  Google Scholar 

  125. Monteclaro FS, Charo IF (1997) The amino-terminal domain of CCR2 is both necessary and sufficient for high affinity binding of monocyte chemoattractant protein 1: receptor activation by a pseudo-tethered ligand. J Biol Chem 272:23186–23190

    CAS  Google Scholar 

  126. Rajagopalan L, Rajarathnam K (2006) Structural basis of chemokine receptor function – a model for binding affinity and ligand selectivity. Biosci Rep 26:325–339

    CAS  Google Scholar 

  127. Szpakowska M, Fievez V, Arumugan K, van Nuland N, Schmit J-C, Chevigne A (2012) Function, diversity and therapeutic potential of the N-terminal domain of human chemokine receptors. Biochem Pharmacol 84:1366–1380

    CAS  Google Scholar 

  128. Chevigne A, Fievez V, Schmit J-C, Deroo S (2011) Engineering and screening the N-terminus of chemokines for drug discovery. Biochem Pharmacol 82:1438–1456

    CAS  Google Scholar 

  129. Crump MP, Gong JH, Loetscher P, Rajarathnam K, Amara A, Arenzana-Seisdedos F, Virelizier JL, Baggiolini M, Sykes BD, Clark-Lewis I (1997) Solution structure and basis for functional activity of stromal cell-derived factor-1; dissociation of CXCR4 activation from binding and inhibition of HIV-1. Embo J 16:6996–7007

    CAS  Google Scholar 

  130. Dong C-Z, Tian S, Choi W-T, Kumar S, Liu D, Xu Y, Han X, Huang Z, An J (2012) Critical role in CXCR4 signaling and internalization of the polypeptide main chain in the amino terminus of SDF-1α probed by novel N-methylated synthetically and modularly modified chemokine analogues. Biochemistry 51:5951–5957

    CAS  Google Scholar 

  131. Gaertner H, Cerini F, Escola J-M, Kuenzi G, Melotti A, Offord R, Rossitto-Borlat IN, Nedellec R, Salkowitz J, Gorochov G et al (2008) Highly potent, fully recombinant anti-HIV chemokines: reengineering a low-cost microbicide. Proc Natl Acad Sci U S A 105:17706–17711

    Google Scholar 

  132. Loetscher P, Clark-Lewis I (2001) Agonistic and antagonistic activities of chemokines. J Leukoc Biol 69:881–884

    CAS  Google Scholar 

  133. Huang C-C, Lam SN, Acharya P, Tang M, Xiang S-H, Hussan SS-U, Stanfield RL, Robinson J, Sodroski J, Wilson IA, et al (2007). Structures of the CCR5 N terminus and of a tyrosine-sulfated antibody with HIV-1 gp120 and CD4. Science 317:1930–1934

    Google Scholar 

  134. Tan JHY, Ludeman JP, Wedderburn J, Canals M, Hall P, Butler SJ, Taleski D, Christopoulos A, Hickey MJ, Payne RJ et al (2013) Tyrosine sulfation of chemokine receptor CCR2 enhances interactions with both monomeric and dimeric forms of the chemokine monocyte chemoattractant protein-1 (MCP-1). J Biol Chem 288:10024–10034

    CAS  Google Scholar 

  135. Veldkamp CT, Seibert C, Peterson FC, De la Cruz NB, Haugner JC III, Basnet H, Sakmar TP, Volkman BF (2008) Structural basis of CXCR4 sulfotyrosine recognition by the chemokine SDF-1/CXCL12. Sci Signal 1:ra4

    Google Scholar 

  136. Ziarek JJ, Getschman AE, Butler SJ, Taleski D, Stephens B, Kufareva I, Handel TM, Payne RJ, Volkman BF (2013) Sulfopeptide probes of the CXCR4/CXCL12 interface reveal oligomer-specific contacts and chemokine allostery. ACS Chem Biol 8:1955–1963

    CAS  Google Scholar 

  137. Brelot A, Heveker N, Montes M, Alizon M (2000) Identification of residues of CXCR4 critical for human immunodeficiency virus coreceptor and chemokine receptor activities. J Biol Chem 275:23736–23744

    CAS  Google Scholar 

  138. Zhou N, Luo Z, Luo J, Liu D, Hall JW, Pomerantz RJ, Huang Z (2001) Structural and functional characterization of human CXCR4 as a chemokine receptor and HIV-1 Co-receptor by mutagenesis and molecular modeling studies. J Biol Chem 276:42826–42833

    CAS  Google Scholar 

  139. Veldkamp CT, Ziarek JJ, Peterson FC, Chen Y, Volkman BF (2010) Targeting SDF-1/CXCL12 with a ligand that prevents activation of CXCR4 through structure-based drug design. J Am Chem Soc 132:7242–7243

    CAS  Google Scholar 

  140. Kofuku Y, Yoshiura C, Ueda T, Terasawa H, Hirai T, Tominaga S, Hirose M, Maeda Y, Takahashi H, Terashima Y et al (2009) Structural basis of the interaction between chemokine stromal cell-derived factor-1/CXCL12 and its g-protein-coupled receptor CXCR4. J Biol Chem 284:35240–35250

    CAS  Google Scholar 

  141. Murphy JW, Cho Y, Sachpatzidis A, Fan C, Hodsdon ME, Lolis E (2007) Structural and functional basis of CXCL12 (stromal cell-derived factor-1a) binding to heparin. J Biol Chem 282:10018–10027

    CAS  Google Scholar 

  142. Nardese V, Longhi R, Polo S, Sironi F, Arcelloni C, Paroni R, DeSantis C, Sarmientos P, Rizzi M, Bolognesi M et al (2001) Structural determinants of CCR5 recognition and HIV-1 blockade in RANTES. Nat Struct Mol Biol 8:611–615

    CAS  Google Scholar 

  143. Ohnishi Y, Senda T, Nandhagopal N, Sugimoto K, Shioda T, Nagal Y, Mitsui Y (2000) Crystal structure of recombinant native SDF-1alpha with additional mutagenesis studies: an attempt at a more comprehensive interpretation of accumulated structure-activity relationship data. J Interferon Cytokine Res 20:691–700

    CAS  Google Scholar 

  144. Vangelista L, Longhi R, Sironi F, Pavone V, Lusso P (2006) Critical role of the N-loop and b1-strand hydrophobic clusters of RANTES-derived peptides in anti-HIV activity. Biochem Biophys Res Commun 351:664–668

    CAS  Google Scholar 

  145. Loetscher P, Gong J-H, Dewald B, Baggiolini M, Clark-Lewis I (1998) N-terminal peptides of stromal cell-derived factor-1 with CXC chemokine receptor 4 agonist and antagonist activities. J Biol Chem 273:22279–22283

    CAS  Google Scholar 

  146. Luo Z, Fan X, Zhou N, Hiraoka M, Luo J, Kaji H, Huang Z (2000) Structure-function study and anti-HIV activity of synthetic peptide analogues derived from viral chemokine vMIP-II. Biochemistry 39:13545–13550

    CAS  Google Scholar 

  147. Zhou N, Luo Z, Luo J, Hall JW, Huang Z (2000) A novel peptide antagonist of CXCR4 derived from the N-terminus of viral chemokine vMIP-II. Biochemistry 39:3782–3787

    CAS  Google Scholar 

  148. Kim S, Lee C, Midura B, Yeung C, Mendoza A, Hong S, Ren L, Wong D, Korz W, Merzouk A et al (2008) Inhibition of the CXCR4/CXCL12 chemokine pathway reduces the development of murine pulmonary metastases. Clin Exp Metastasis 25:201–211

    CAS  Google Scholar 

  149. Lefrançois M, Lefebvre M-R, Saint-Onge G, Boulais PE, Lamothe S, Leduc R, Lavigne P, Heveker N, Escher E (2011) Agonists for the chemokine receptor CXCR4. ACS Med Chem Lett 2:597–602

    Google Scholar 

  150. Tudan C, Willick GE, Chahal S, Arab L, Law P, Salari H, Merzouk A (2002) C-Terminal cyclization of an SDF-1 small peptide analogue dramatically increases receptor affinity and activation of the CXCR4 receptor. J Med Chem 45:2024–2031

    CAS  Google Scholar 

  151. Gozansky EK, Louis JM, Caffrey M, Marius Clore G (2005) Mapping the binding of the N-terminal extracellular tail of the CXCR4 receptor to stromal cell-derived factor-1alpha. J Mol Biol 345:651–658

    CAS  Google Scholar 

  152. Tian S, Choi W-T, Liu D, Pesavento J, Wang Y, An J, Sodroski JG, Huang Z (2005) Distinct functional sites for human immunodeficiency virus type 1 and stromal cell-derived factor 1alpha on CXCR4 transmembrane helical domains. J Virol 79:12667–12673

    CAS  Google Scholar 

  153. Zoffmann S, Chollet A, Galzi J-L (2002) Identification of the extracellular loop 2 as the point of interaction between the N terminus of the chemokine MIP-1alpha and its CCR1 receptor. Mol Pharmacol 62:729–736

    CAS  Google Scholar 

  154. Huang X, Shen J, Cui M, Shen L, Luo X, Ling K, Pei G, Jiang H, Chen K (2003) Molecular dynamics simulations on SDF-1a binding with CXCR4 receptor. Biophys J 84:171–184

    CAS  Google Scholar 

  155. El-Asmar LL, Springael J-Y, Ballet SB, Andrieu EU, Vassart G, Parmentier M (2005) Evidence for negative binding cooperativity within CCR5-CCR2b heterodimers. Mol Pharmacol 67:460–469

    Google Scholar 

  156. Sohy D, Parmentier M, Springael J-Y (2007) Allosteric transinhibition by specific antagonists in CCR2/CXCR4 heterodimers. J Biol Chem 282:30062–30069

    CAS  Google Scholar 

  157. Vila-Coro AJ, Rodruguez-Frade JM, Martin De Ana A, Moreno-Ortiz MC, Martinez-A C, Mellado M (1999) The chemokine SDF-1a triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway. FASEB J 13:1699–1710

    CAS  Google Scholar 

  158. Xu L, Li Y, Sun H, Li D, Hou T (2013) Structural basis of the interactions between CXCR4 and CXCL12/SDF-1 revealed by theoretical approaches. Mol BioSyst 9:2107–2117

    CAS  Google Scholar 

  159. Liou J-W, Chang F-T, Chung Y, Chen W-Y, Fischer WB, Hsu H-J (2014) In silico analysis reveals sequential interactions and protein conformational changes during the binding of chemokine CXCL-8 to its receptor CXCR1. PLoS One 9:e94178

    Google Scholar 

  160. Saini V, Marchese A, Majetschak M (2010) CXC chemokine receptor 4 is a cell surface receptor for extracellular ubiquitin. J Biol Chem 285:15566–15576

    CAS  Google Scholar 

  161. Chou C-Y, Lai H-Y, Chen H-Y, Cheng S-C, Cheng K-W, Chou Y-W (2014) Structural basis for catalysis and ubiquitin recognition by the severe acute respiratory syndrome coronavirus papain-like protease. Acta Crystallogr Sect D 70:572–581

    CAS  Google Scholar 

  162. Ryu EK, Kim TG, Kwon TH, Jung ID, Ryu D, Park Y-M, Kim J, Ahn KH, Ban C (2007) Crystal structure of recombinant human stromal cell-derived factor-1α. Proteins Struct Funct Bioinformat 67:1193–1197

    CAS  Google Scholar 

  163. Saini V, Marchese A, Tang W-J, Majetschak M (2011) Structural determinants of ubiquitin-CXC chemokine receptor 4 interaction. J Biol Chem 286:44145–44152

    CAS  Google Scholar 

  164. Saini V, Staren DM, Ziarek JJ, Nashaat ZN, Campbell EM, Volkman BF, Marchese A, Majetschak M (2011) The CXC chemokine receptor 4 ligands ubiquitin and stromal cell-derived factor-1alpha function through distinct receptor interactions. J Biol Chem 286:33466–33477

    CAS  Google Scholar 

  165. Choi W-T, Tian S, Dong C-Z, Kumar S, Liu D, Madani N, An J, Sodroski JG, Huang Z (2005) Unique ligand binding sites on CXCR4 probed by a chemical biology approach: implications for the design of selective human immunodeficiency virus type 1 inhibitors. J Virol 79:15398–15404

    CAS  Google Scholar 

  166. Liu J, Bartesaghi A, Borgnia MJ, Sapiro G, Subramaniam S (2008) Molecular architecture of native HIV-1 gp120 trimers. Nature 455:109–113

    CAS  Google Scholar 

  167. Unutmaz D, Littman DR (1997) Expression pattern of HIV-1 coreceptors on T cells: implications for viral transmission and lymphocyte homing. Proc Natl Acad Sci U S A 94:1615–1618

    CAS  Google Scholar 

  168. Bleul CC, Wu L, Hoxie JA, Springer TA, Mackay CR (1997) The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. Proc Natl Acad Sci U S A 94:1925–1930

    CAS  Google Scholar 

  169. Lengauer T, Sander O, Sierra S, Thielen A, Kaiser R (2007) Bioinformatics prediction of HIV coreceptor usage. Nat Biotech 25:1407–1410

    CAS  Google Scholar 

  170. Bozek K, Lengauer T, Sierra S, Kaiser R, Domingues FS (2013) Analysis of physicochemical and structural properties determining HIV-1 coreceptor usage. PLoS Comput Biol 9:e1002977

    CAS  Google Scholar 

  171. Kumar R, Raghava GPS (2013) Hybrid approach for predicting coreceptor used by HIV-1 from Its V3 loop amino acid sequence. PLoS One 8:e61437

    CAS  Google Scholar 

  172. Masso M, Vaisman I (2010) Accurate and efficient gp120 V3 loop structure based models for the determination of HIV-1 co-receptor usage. BMC Bioinformat 11:494

    Google Scholar 

  173. Kufareva I, Chen Y-C, Ilatovskiy AV, Abagyan R (2012) Compound activity prediction using models of binding pockets or ligand properties in 3D. Curr Top Med Chem 12:1869–1882

    CAS  Google Scholar 

  174. Colin P, Benureau Y, Staropoli I, Wang Y, Gonzalez N, Alcami J, Hartley O, Brelot A, Arenzana-Seisdedos F, Lagane B (2013) HIV-1 exploits CCR5 conformational heterogeneity to escape inhibition by chemokines. Proc Natl Acad Sci U S A 110:9475–9480

    CAS  Google Scholar 

  175. Nedellec R, Coetzer M, Lederman MM, Offord RE, Hartley O, Mosier DE (2011) Resistance to the CCR5 Inhibitor 5P12-RANTES requires a difficult evolution from CCR5 to CXCR4 coreceptor use. PLoS One 6:e22020

    CAS  Google Scholar 

  176. Tilton JC, Amrine-Madsen H, Miamidian JL, Kitrinos KM, Pfaff J, Demarest JF, Ray N, Jeffrey JL, Labranche CC, Doms RW (2010) HIV type 1 from a patient with baseline resistance to CCR5 antagonists uses drug-bound receptor for entry. AIDS Res Hum Retroviruses 26:13–24

    CAS  Google Scholar 

  177. Berro R, Klasse PJ, Moore JP, Sanders RW (2012) V3 determinants of HIV-1 escape from the CCR5 inhibitors Maraviroc and Vicriviroc. Virology 427:158–165

    CAS  Google Scholar 

  178. Harrison JE, Lynch JB, Sierra L-J, Blackburn LA, Ray N, Collman RG, Doms RW (2008) Baseline resistance of primary human immunodeficiency virus type 1 strains to the CXCR4 inhibitor AMD3100. J Virol 82:11695–11704

    CAS  Google Scholar 

  179. Kramp BK, Sarabi A, Koenen RR, Weber C (2011) Heterophilic chemokine receptor interactions in chemokine signaling and biology. Exp Cell Res 317:655–663

    CAS  Google Scholar 

  180. Salanga CL, O'Hayre M, Handel T (2009) Modulation of chemokine receptor activity through dimerization and crosstalk. Cell Mol Life Sci 66:1370–1386

    CAS  Google Scholar 

  181. Stephens B, Handel TM (2013) Chemokine receptor oligomerization and allostery. In: Kenakin T (ed) Oligomerization and allosteric modulation in G-protein coupled receptors. Academic, pp 375–420. doi:10.1016/B978-0-12-394587-7.00009-9

  182. Milligan G (2009) The role of dimerisation in the cellular trafficking of G-protein-coupled receptors. Curr Opin Pharmacol 10:23–29

    CAS  Google Scholar 

  183. Milligan G (2013) The prevalence, maintenance, and relevance of G protein-coupled receptor oligomerization. Mol Pharmacol 84:158–169

    CAS  Google Scholar 

  184. Katritch V, Cherezov V, Stevens RC (2013) Structure-function of the G protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol 53:531–556

    CAS  Google Scholar 

  185. Huang J, Chen S, Zhang JJ, Huang X-Y (2013) Crystal structure of oligomeric β1-adrenergic G protein–coupled receptors in ligand-free basal state. Nat Struct Mol Biol 20:419–425

    CAS  Google Scholar 

  186. Hern JA, Baig AH, Mashanov GI, Birdsall B, Corrie JET, Lazareno S, Molloy JE, Birdsall NJM (2010) Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. Proc Natl Acad Sci U S A 107:2693–2698

    CAS  Google Scholar 

  187. Kufareva I, Stephens B, Gilliland CT, Wu B, Fenalti G, Hamel DJ, Stevens RC, Abagyan R, Handel TM (2013) A novel approach to quantify G-protein-coupled receptor dimerization equilibrium using bioluminescence resonance energy transfer. In: Cardona AE, Ubogu EE (eds) Chemokines: methods and protocols. New York, Springer, pp 93–127

    Google Scholar 

  188. Nobles M, Benians A, Tinker A (2005) Heterotrimeric G proteins precouple with G protein-coupled receptors in living cells. Proc Natl Acad Sci U S A 102:18706–18711

    CAS  Google Scholar 

  189. Sohy D, Yano H, de Nadai P, Urizar E, Guillabert A, Javitch JA, Parmentier M, Springael J-Y (2009) Hetero-oligomerization of CCR2, CCR5, and CXCR4 and the protean effects of “selective” antagonists. J Biol Chem 284:31270–31279

    CAS  Google Scholar 

  190. Lemay J, Marullo S, Jockers R, Alizon M, Brelot A (2005) On the dimerization of CCR5. Nat Immunol 6:535–535

    CAS  Google Scholar 

  191. Wang J, He L, Combs CA, Roderiquez G, Norcross MA (2006) Dimerization of CXCR4 in living malignant cells: control of cell migration by a synthetic peptide that reduces homologous CXCR4 interactions. Mol Cancer Ther 5:2474–2483

    CAS  Google Scholar 

  192. Percherancier Y, Berchiche YA, Slight I, Volkmer-Engert R, Tamamura H, Fujii N, Bouvier M, Heveker N (2005) Bioluminescence resonance energy transfer reveals ligand-induced conformational changes in CXCR4 homo- and heterodimers. J Biol Chem 280:9895–9903

    CAS  Google Scholar 

  193. Casciari D, Dell’Orco D, Fanelli F (2008) Homodimerization of neurotensin 1 receptor involves helices 1, 2, and 4: insights from quaternary structure predictions and dimerization free energy estimations. J Chem Inf Model 48:1669–1678

    CAS  Google Scholar 

  194. Johnston JM, Filizola M (2014) Beyond standard molecular dynamics: investigating the molecular mechanisms of G protein-coupled receptors with enhanced molecular dynamics methods. In: Filizola M (ed) G protein-coupled receptors – modeling and simulation. Springer, Netherlands, pp 95–125

    Google Scholar 

  195. Periole X, Knepp AM, Sakmar TP, Marrink SJ, Huber T (2012) Structural determinants of the supramolecular organization of G protein-coupled receptors in bilayers. J Am Chem Soc 134:10959–10965

    CAS  Google Scholar 

  196. Johnston JM, Wang H, Provasi D, Filizola M (2012) Assessing the relative stability of dimer interfaces in G protein-coupled receptors. PLoS Comput Biol 8:e1002649

    CAS  Google Scholar 

  197. Mondal S, Johnston JM, Wang H, Khelashvili G, Filizola M, Weinstein H (2013) Membrane driven spatial organization of GPCRs. Sci Rep 3

    Google Scholar 

  198. Christopher JA, Brown J, Dore AS, Errey JC, Koglin M, Marshall FH, Myszka DG, Rich RL, Tate CG, Tehan B et al (2013) Biophysical fragment screening of the beta1-adrenergic receptor: identification of high affinity arylpiperazine leads using structure-based drug design. J Med Chem 56:3446–3455

    CAS  Google Scholar 

  199. Moukhametzianov R, Warne T, Edwards PC, Serrano-Vega MJ, Leslie AGW, Tate CG, Schertler GFX (2011) Two distinct conformations of helix 6 observed in antagonist-bound structures of a b1-adrenergic receptor. Proc Natl Acad Sci U S A 108:8228–8232

    CAS  Google Scholar 

  200. Warne T, Edwards PC, Leslie AG, Tate CG (2012) Crystal structures of a stabilized b1-adrenoceptor bound to the biased agonists bucindolol and carvedilol. Structure 20:841–849

    Google Scholar 

  201. Warne T, Moukhametzianov R, Baker JG, Nehme R, Edwards PC, Leslie AGW, Schertler GFX, Tate CG (2011) The structural basis for agonist and partial agonist action on a b1-adrenergic receptor. Nature 469:241–244

    CAS  Google Scholar 

  202. Congreve M, Andrews SP, Dore AS, Hollenstein K, Hurrell E, Langmead CJ, Mason JS, Ng IW, Tehan B, Zhukov A et al (2012) Discovery of 1,2,4-triazine derivatives as adenosine A2A antagonists using structure based drug design. J Med Chem 55:1898–1903

    CAS  Google Scholar 

  203. Dore AS, Robertson N, Errey JC, Ng I, Hollenstein K, Tehan B, Hurrell E, Bennett K, Congreve M, Magnani F et al (2011) Structure of the adenosine A2A receptor in complex with ZM241385 and the xanthines XAC and caffeine. Structure 19:1283–1293

    Google Scholar 

  204. Hino T, Arakawa T, Iwanari H, Yurugi-Kobayashi T, Ikeda-Suno C, Nakada-Nakura Y, Kusano-Arai O, Weyand S, Shimamura T, Nomura N et al (2012) G-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody. Nature 482:237–240

    CAS  Google Scholar 

  205. Lebon G, Warne T, Edwards PC, Bennett K, Langmead CJ, Leslie AGW, Tate CG (2011) Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature 474:521–525

    CAS  Google Scholar 

  206. Lee S, Bhattacharya S, Grisshammer R, Tate C, Vaidehi N (2014) Dynamic behavior of the active and inactive states of the adenosine A2A receptor. J Phys Chem B 118:3355–3365

    CAS  Google Scholar 

  207. Niesen MJM, Bhattacharya S, Grisshammer R, Tate CG, Vaidehi N (2013) Thermostabilization of the b1-adrenergic receptor correlates with increased entropy of the inactive state. J Phys Chem B 117:7283–7291

    CAS  Google Scholar 

  208. Bordner AJ, Abagyan RA (2004) Large-scale prediction of protein geometry and stability changes for arbitrary single point mutations. Proteins 57:400–413

    CAS  Google Scholar 

  209. Masso M, Vaisman II (2008) Accurate prediction of stability changes in protein mutants by combining machine learning with structure based computational mutagenesis. Bioinformatics 24:2002–2009

    CAS  Google Scholar 

  210. Chen K-YM, Zhou F, Fryszczyn BG, Barth P (2012) Naturally evolved G protein-coupled receptors adopt metastable conformations. Proc Natl Acad Sci U S A 109:13284–13289

    CAS  Google Scholar 

  211. Bhattacharya S, Lam AR, Li H, Balaraman G, Niesen MJM, Vaidehi N (2013) Critical analysis of the successes and failures of homology models of G protein-coupled receptors. Proteins Struct Funct Bioinformat 81:729–739

    CAS  Google Scholar 

  212. Zhu L, Zhao Q, Wu B (2013) Structure-based studies of chemokine receptors. Curr Opin Struct Biol 23:539–546

    CAS  Google Scholar 

  213. Gonnet G, Cohen M, Benner S (1992) Exhaustive matching of the entire protein sequence database. Science 256:1443–1445

    CAS  Google Scholar 

  214. de Kruijf P, Lim HD, Roumen L, Renjaan VA, Zhao J, Webb ML, Auld DS, Wijkmans JCHM, Zaman GJR, Smit MJ et al (2011) Identification of a novel allosteric binding site in the CXCR2 chemokine receptor. Mol Pharmacol 80:1108–1118

    Google Scholar 

  215. Scholten DJ, Roumen L, Wijtmans M, Verkade-Vreeker MCA, Custers H, Lai M, de Hooge D, Canals M, de Esch IJP, Smit MJ et al (2014) Identification of overlapping but differential binding sites for the high-affinity CXCR3 antagonists NBI-74330 and VUF11211. Mol Pharmacol 85:116–126

    Google Scholar 

  216. Yoshikawa Y, Oishi S, Kubo T, Tanahara N, Fujii N, Furuya T (2013) Optimized method of G-protein-coupled receptor homology modeling: its application to the discovery of novel CXCR7 ligands. J Med Chem 56:4236–4251

    CAS  Google Scholar 

  217. Huang D, Gu Q, Ge H, Ye J, Salam NK, Hagler A, Chen H, Xu J (2012) On the value of homology models for virtual screening: discovering hCXCR3 antagonists by pharmacophore-based and structure-based approaches. J Chem Inf Model 52:1356–1366

    CAS  Google Scholar 

Download references

Acknowledgements

Authors thank Dr. Seva Katritch, The Scripps Research Institute, for valuable discussions and insights, and Eugene Raush, Molsoft LLC, for the help with molecular graphics. This work is partially funded by National Institutes of Health grants R01 GM071872, U01 GM094612, U54 GM094618.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Kufareva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kufareva, I., Abagyan, R., Handel, T.M. (2014). Role of 3D Structures in Understanding, Predicting, and Designing Molecular Interactions in the Chemokine Receptor Family. In: Tschammer, N. (eds) Chemokines. Topics in Medicinal Chemistry, vol 14. Springer, Cham. https://doi.org/10.1007/7355_2014_77

Download citation

Publish with us

Policies and ethics