Skip to main content

DNA Base Damage Recognition and Processing

  • Chapter
  • First Online:
Book cover Genome Integrity

Part of the book series: Genome Dynamics and Stability ((GENOME,volume 1))

Abstract

In living cells DNA base lesions are formed continuously as a consequence of normal metabolism and are also generated by a number of external factors. Simple base damages are repaired by base excision repair that is initiated by a damage specific DNA glycosylase, which removes the damaged base creating an abasic site (apurinic/apyrimidinic, AP site). AP endonuclease cleaves the phosphodiester bond 5′ to the AP site and then DNA polymerase β adds the first nucleotide to the 3′-end of the incised AP site and at the same time removes the 5′-sugar phosphate residue. DNA ligase completes the repair by sealing the DNA ends. These processes are directed and co-ordinated by multiple protein-protein interactions. This review focuses primarily on mammalian base excision repair, and in particular addresses the enzymology of the repair process and co-ordination of repair reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abner CW, Lau AY, Ellenberger T, Bloom LB (2001) Base excision and DNA binding activities of human alkyladenine DNA glycosylase are sensitive to the base paired with a lesion. J Biol Chem 276:13379–13387

    PubMed  CAS  Google Scholar 

  2. Aboussekhra A, Biggerstaff M, Shivji MK, Vilpo JA, Moncollin V, Podust VN, Protic M, Hubscher U, Egly JM, Wood RD (1995) Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell 80:859–868

    PubMed  CAS  Google Scholar 

  3. Allinson SL, Dianova II, Dianov GL (2003) Poly(ADP-ribose) polymerase in base excision repair: always engaged, but not essential for DNA damage processing. Acta Biochim Pol 50:169–179

    PubMed  CAS  Google Scholar 

  4. Allinson SL, Dianova II, Dianov GL (2001) DNA polymerase βis the major dRP lyase involved in repair of oxidative base lesions in DNA by mammalian cell extracts. EMBO J 20:6919–6926

    PubMed  CAS  Google Scholar 

  5. Allinson SL, Sleeth KM, Matthewman GE, Dianov GL (2004) Orchestration of base excision repair by controlling the rates of enzymatic activities. DNA Repair 3:23–31

    PubMed  CAS  Google Scholar 

  6. Ame JC, Spenlehauer C, de Murcia G (2004) The PARP superfamily. Bioessays 26:882–893

    PubMed  CAS  Google Scholar 

  7. Aoufouchi S, Yelamos J, Milstein C (1999) Inhibition of apoptosis of a PARP(–/–) cell line transfected with PARP DNA-binding domain mutants. J Mol Biol 290:943–949

    PubMed  CAS  Google Scholar 

  8. Aspinwall R, Rothwell DG, Roldan-Arjona T, Anselmino C, Ward CJ, Cheadle JP, Sampson JR, Lindahl T, Harris PC, Hickson ID (1997) Cloning and characterization of a functional human homolog of Escherichia coli endonuclease III. Proc Natl Acad Sci USA 94:109–114

    PubMed  CAS  Google Scholar 

  9. Barnes DE, Tomkinson AE, Lehmann AR, Webster HDB, Lindahl T (1992) Mutations in the DNA ligase I gene of an individual with immunodeficiencies and cellular hypersensitivity. Cell 69:495–504

    PubMed  CAS  Google Scholar 

  10. Barrett TE, Savva R, Panayotou G, Barlow T, Brown T, Jiricny J, Pearl LH (1998) Crystal structure of a G:T/U mismatch-specific DNA glycosylase: mismatch recognition by complementary-strand interactions. Cell 92:117–129

    PubMed  CAS  Google Scholar 

  11. Bennett RA, Wilson DM 3rd, Wong D, Demple B (1997) Interaction of human apurinic endonuclease and DNA polymerase βin the base excision repair pathway. Proc Natl Acad Sci USA 94:7166–7169

    PubMed  CAS  Google Scholar 

  12. Bennett SE, Sung JS, Mosbaugh DW (2001) Fidelity of uracil-initiated base excision DNA repair in DNA polymerase β-proficient and -deficient mouse embryonic fibroblast cell extracts. J Biol Chem 276:42588–42600

    PubMed  CAS  Google Scholar 

  13. Bentley DJ, Harrison C, Ketchen A-M, Redhead NJ, Samuel K, Waterfall M, Ansell JD, Melton DW (2002) DNA ligase I null mouse cells show normal DNA repair activity but altered DNA replication and reduced genome stability. J Cell Sci 115:1551–1561

    PubMed  CAS  Google Scholar 

  14. Bentley DJ, Selfridge J, Millar JK, Samuel K, Hole N, Ansell JD, Melton DW (1996) DNA ligase I is required for fetal liver erythropoiesis but is not essential for mammalian cells. Nature Genetics 13:489–491

    PubMed  CAS  Google Scholar 

  15. Bergoglio V, Canitrot Y, Hogarth L, Minto L, Howell SB, Cazaux C, Hoffmann JS (2001) Enhanced expression and activity of DNA polymerase beta in human ovarian tumor cells: impact on sensitivity towards antitumor agents. Oncogene 20:6181–6187

    PubMed  CAS  Google Scholar 

  16. Bhakat KK, Hazra TK, Mitra S (2004) Acetylation of the human DNA glycosylase NEIL2 and inhibition of its activity. Nucleic Acids Res 32:3033–3039

    PubMed  CAS  Google Scholar 

  17. Bjoras M, Seeberg E, Luna L, Pearl LH, Barrett TE (2002) Reciprocal flipping underlies substrate recognition and catalytic activation by the human 8-oxo-guanine DNA glycosylase. J Mol Biol 317:171–177

    PubMed  CAS  Google Scholar 

  18. Boldogh I, Milligan D, Lee MS, Bassett H, Lloyd RS, McCullough AK (2001) hMYH cell cycle-dependent expression, subcellular localization and association with replication foci: evidence suggesting replication-coupled repair of adenine: 8-oxoguanine mispairs. Nucleic Acids Res 29:2802–2809

    PubMed  CAS  Google Scholar 

  19. Boorstein RJ, Cummings A Jr, Marenstein DR, Chan MK, Ma Y, Neubert TA, Brown SM, Teebor GW (2001) Definitive Identification of Mammalian 5-Hydroxymethyluracil DNA N-Glycosylase Activity as SMUG1. J Biol Chem 276:41991–41997

    PubMed  CAS  Google Scholar 

  20. Braithwaite EK, Prasad R, Shock DD, Hou EW, Beard WA, Wilson SH (2005) DNA Polymerase λMediates a back-up base excision repair activity in extracts of mouse embryonic fibroblasts. J Biol Chem 280:18469–18475

    PubMed  CAS  Google Scholar 

  21. Bruner SD, Norman DPG, Verdine GL (2000) Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature 403:859–866

    PubMed  CAS  Google Scholar 

  22. Burrows CJ, Muller JG (1998) Oxidative nucleobase modifications leading to strand scission. Chemical Reviews 98:1109–1151

    PubMed  CAS  Google Scholar 

  23. Cabelof DC, Raffoul JJ, Yanamadala S, Guo Z, Heydari AR (2002) Induction of DNA polymerase β-dependent base excision repair in response to oxidative stress in vivo. Carcinogenesis 23:1419–1425

    PubMed  CAS  Google Scholar 

  24. Caldecott KW, Aoufouchi S, Johnson P, Shall S (1996) XRCC1 polypeptide interacts with DNA polymerase βand possibly poly (ADP-ribose) polymerase, DNA ligase III is a novel molecular nick-sensor in vitro. Nucleic Acids Res 24:4387–4394

    PubMed  CAS  Google Scholar 

  25. Caldecott KW, McKeown CK, Tucker JD, Ljungquist S, Thompson LH (1994) An interaction between the mammalian DNA repair protein XRCC1, DNA ligase III. Mol Cell Biol 14:68–76

    PubMed  CAS  Google Scholar 

  26. Caldecott KW, Tucker JD, Stanker LH, Thompson LH (1995) Characterization of the XRCC1-DNA ligase III complex in vitro and its absence from mutant hamster cells. Nucleic Acids Res 23:4836–4843

    PubMed  CAS  Google Scholar 

  27. Canitrot Y, Cazaux C, Frechet M, Bouayadi K, Lesca C, Salles B, Hoffmann JS (1998) Overexpression of DNA polymerase βin cell results in a mutator phenotype and a decreased sensitivity to anticancer drugs. Proc Natl Acad Sci USA 95:12586–12590

    PubMed  CAS  Google Scholar 

  28. Cappelli E, Taylor R, Cevasco M, Abbondandolo A, Caldecott K, Frosina G (1997) Involvement of XRCC1 and DNA ligase III gene products in DNA base excision repair. J Biol Chem 272:23970–23975

    PubMed  CAS  Google Scholar 

  29. Chagovetz AM, Sweasy JB, Preston BD (1997) Increased activity and fidelity of DNA polymerase βon single-nucleotide gapped DNA. J Biol Chem 272:27501–27504

    PubMed  CAS  Google Scholar 

  30. Chakravarti D, Ibeanu GC, Tano K, Mitra S (1991) Cloning and expression in Escherichia coli of a human cDNA encoding the DNA repair protein N-methylpurine-DNA glycosylase. J Biol Chem 266:15710–15715

    PubMed  CAS  Google Scholar 

  31. Chaudhry MA, Weinfeld M (1995) The action of Escherichia coli endonuclease III on multiply damaged sites in DNA. J Mol Biol 249:914–922

    PubMed  CAS  Google Scholar 

  32. Chen DS, Herman VG, Demple B (1991) Two distinct human diesterases that hydrolyze 3′-blocking deoxyribose fragments from oxidised DNA. Nucleic Acids Res 19:5907–5914

    PubMed  CAS  Google Scholar 

  33. Chou KM, Cheng YC (2002) An exonucleolytic activity of human apurinic/apyrimidinic endonuclease on 3′ mispaired DNA. Nature 415:655–659

    PubMed  CAS  Google Scholar 

  34. Chou KM, Cheng YC (2003) The exonuclease activity of human apurinic/apyrimidinic endonuclease (APE1) Biochemical properties and inhibition by the natural dinucleotide Gp4G. J Biol Chem 278:18289–18296

    PubMed  CAS  Google Scholar 

  35. Chou KM, Kukhanova M, Cheng YC (2000) A novel action of human apurinic/apyrimidinic endonuclease: excision of L-configuration deoxyribonucleoside analogs from the 3′ termini of DNA. J Biol Chem 275:31009–31015

    PubMed  CAS  Google Scholar 

  36. Dantzer F, de la Rubia G, Murcia JMD, Hostomsky Z, de Murcia G, Schreiber V (2000) Base excision repair is impaired in mammalian cells lacking poly(ADP-ribose) polymerase-1. Biochemistry 39:7559–7569

    PubMed  CAS  Google Scholar 

  37. Dantzer F, Luna L, Bjoras M, Seeberg E (2002) Human OGG1 undergoes serine phosphorylation and associates with the nuclear matrix and mitotic chromatin in vivo. Nucl Acids Res 30:2349–2357

    PubMed  CAS  Google Scholar 

  38. DeMott M, Zigman S, Bambara RA (1998) Replication protein A stimulates long patch DNA base excision repair. J Biol Chem 273:27492–27498

    PubMed  CAS  Google Scholar 

  39. Demple B, Harrison L (1994) Repair of oxidative damage to DNA: enzymology and biology. Annu Rev Biochem 63:915–948

    PubMed  CAS  Google Scholar 

  40. Demple B, Herman T, Chen DS (1991) Cloning and expression of APE, the cDNA encoding the major human apurinic endonuclease: definition of a family of DNA repair enzymes. Proc Natl Acad Sci USA 88:11450–11454

    PubMed  CAS  Google Scholar 

  41. DeRose EF, Kirby TW, Mueller GA, Bebenek K, Garcia-Diaz M, Blanco L, Kunkel TA, London RE (2003) Solution structure of the lyase domain of human DNA polymerase lambda. Biochemistry 42:9564–9574

    PubMed  CAS  Google Scholar 

  42. Dianov G, Bischoff C, Piotrowski J, Bohr VA (1998) Repair pathways for processing of 8-oxoguaninein DNA by mammalian cell extracts. J Biol Chem 273:33811–33816

    PubMed  CAS  Google Scholar 

  43. Dianov G, Price A, Lindahl T (1992) Generation of single-nucleotide repair patches following excision of uracil residues from DNA. Mol Cell Biol 12:1605–1612

    PubMed  CAS  Google Scholar 

  44. Dianov GL, Jensen BR, Kenny MK, Bohr VA (1999) Replication protein A stimulates proliferating cell nuclear antigen-dependent repair of abasic sites in DNA by human cell extracts. Biochemistry 38:11021–11025

    PubMed  CAS  Google Scholar 

  45. Dianov GL, Thybo T, Dianova II, Lipinski LJ, Bohr VA (2000) Single nucleotide patch base excision repair is the major pathway for removal of thymine glycol from DNA in human cell extracts. J Biol Chem 275:11809–11813

    PubMed  CAS  Google Scholar 

  46. Dianov GL, Sleeth KM, Dianova II, Allinson SL (2003) Repair of abasic sites in DNA. Mutat Res 531:157–163

    PubMed  CAS  Google Scholar 

  47. Dianova II, Sleeth KM, Allinson SL, Parsons JL, Breslin C, Caldecott KW, Dianov GL (2004) XRCC1-DNA polymerase βinteraction is required for efficient base excision repair. Nucleic Acids Res 32:2550–2555

    PubMed  CAS  Google Scholar 

  48. Dimitriadis EK, Prasad R, Vaske MK, Chen L, Tomkinson AE, Lewis MS, Wilson SH (1998) Thermodynamics of human DNA ligase I trimerization and association with DNA polymerase beta. J Biol Chem 273:20540–20550

    PubMed  CAS  Google Scholar 

  49. Dou H, Mitra S, Hazra TK (2003) Repair of oxidized bases in DNA bubble structures by human DNA glycosylases NEIL1 and NEIL2. J Biol Chem 278:49679–49684

    PubMed  CAS  Google Scholar 

  50. Drohat AC, Kwon K, Krosky DJ, Stivers JT (2002) 3-methyladenine DNA glycosylase is an unexpected helix-hairpin-helix superfamily member. Nature Struct Biol 9:659–664

    CAS  Google Scholar 

  51. Duncan BK, Miller J (1980) Mutagenic deamination of cytosine residues in DNA. Nature 287:560–561

    PubMed  CAS  Google Scholar 

  52. Duncan BK, Weiss B (1982) Specific mutator effects of ung (uracil-DNA glycosylase) mutations in Escherichia coli. J Bacteriol 151:750–755

    PubMed  CAS  Google Scholar 

  53. Elder RH, Dianov GL (2002) Repair of dihydrouracil supported by base excision repair in mNTH1 knock-out cell extracts. J Biol Chem 277:50487–50490

    PubMed  CAS  Google Scholar 

  54. El-Khamisy SF, Masutani M, Suzuki H, Caldecott KW (2003) A requirement for PARP-1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA damage. Nucleic Acids Res 31:5526–5533

    PubMed  CAS  Google Scholar 

  55. Engelward BP, Weeda G, Wyatt MD, Broekhof JLM, deWit J, Donker I, Allan JM, Gold B, Hoeijmakers JHJ, Samson LD (1997) Base excision repair deficient mice lacking the Aag alkyladenine DNA glycosylase. Proceedings of the National Academy of Sciences of the United States of America 94:13087–13092

    PubMed  CAS  Google Scholar 

  56. Erzberger JP, Barsky D, Scharer OD, Colvin ME, Wilson DM 3rd (1998) Elements in abasic site recognition by the major human and Escherichia coli apurinic/apyrimidinic endonucleases. Nucleic Acids Res 26:2771–2778

    PubMed  CAS  Google Scholar 

  57. Evans AR, Limp-Foster M, Kelley MR (2000) Going APE over ref-1. Mutat Res 461:83–108

    PubMed  CAS  Google Scholar 

  58. Fan J, Otterlei M, Wong HK, Tomkinson AE, Wilson DM 3rd (2004) XRCC1 co-localizes and physically interacts with PCNA. Nucleic Acids Res 32:2193–2201

    PubMed  CAS  Google Scholar 

  59. Fischer JA, Muller-Weeks S, Caradonna S (2004) Proteolytic degradation of the nuclear isoform of uracil-DNA glycosylase occurs during the S-phase of the cell cycle. DNA Repair (Amst) 3:505–513

    CAS  Google Scholar 

  60. Fornace AJ Jr, Zmudzka B, Hollander MC, Wilson SH (1989) Induction of β-polymerase mRNA by DNA damaging agents in Chinese hamster ovary cells. Mol Cell Biol 9:851–853

    PubMed  CAS  Google Scholar 

  61. Fortini P, Parlanti E, Sidorkina OM, Laval J, Dogliotti E (1999) The type of DNA glycosylase determines the base excision repair pathway in mammalian cells. J Biol Chem 274:15230–15236

    PubMed  CAS  Google Scholar 

  62. Friedberg EC, Walker GC, Siede W (1995) DNA Repair and Mutagenesis (Washington DC, American Society of Microbiology Press)

    Google Scholar 

  63. Fromme JC, Verdine GL (2002) Structural insights into lesion recognition and repair by the bacterial 8-oxoguanine DNA glycosylase MutM. Nat Struct Biol 9:544–552

    PubMed  CAS  Google Scholar 

  64. Frosina G, Fortini P, Rossi O, Carrozzino F, Raspaglio G, Cox LS, Lane DP, Abbondandolo A, Dogliotti E (1996) Two pathways for base excision repair in mammalian cells. J Biol Chem 271:9573–9578

    PubMed  CAS  Google Scholar 

  65. Fung H, Demple B (2005) A vital role for ape1/ref1 protein in repairing spontaneous DNA damage in human cells. Mol Cell 17:463–470

    PubMed  CAS  Google Scholar 

  66. Garcia-Diaz M, Bebenek K, Kunkel TA, Blanco L (2001) Identification of an intrinsic 5′-deoxyribose-5-phosphate lyase activity in human DNA polymerase λ: a possible role in base excision repair. J Biol Chem 276:34659–34663

    PubMed  CAS  Google Scholar 

  67. Garcia-Diaz M, Bebenek K, Sabariegos R, Dominguez O, Rodriguez J, Kirchhoff T, Garcia-Palomero E, Picher AJ, Juarez R, Ruiz JF et al. (2002) DNA polymerase λ, a novel DNA repair enzyme in human cells. J Biol Chem 277:13184–13191

    PubMed  CAS  Google Scholar 

  68. Gilboa R, Zharkov DO, Golan G, Fernandes AS, Gerchman SE, Matz E, Kycia JH, Grollman AP, Shoham G (2002) Structure of formamidopyrimidine-DNA glycosylase covalently complexed to DNA. J Biol Chem 277:19811–19816

    PubMed  CAS  Google Scholar 

  69. Grosch S, Fritz G, Kaina B (1998) Apurinic endonuclease (Ref-1) is induced in mammalian cells by oxidative stress and involved in clastogenic adaptation. Cancer Res 58:4410–4416

    PubMed  CAS  Google Scholar 

  70. Grosch S, Kaina B (1999) Transcriptional activation of apurinic/apyrimidinic endonuclease (Ape, Ref-1) by oxidative stress requires CREB. Biochem Biophys Res Commun 261:859–863

    PubMed  CAS  Google Scholar 

  71. Gryk MR, Marintchev A, Maciejewski MW, Robertson A, Wilson SH, Mullen GP (2002) Mapping of the interaction interface of DNA polymerase βwith XRCC1. Structure (Camb) 10:1709–1720

    PubMed  CAS  Google Scholar 

  72. Gu H, Marth JD, Orban PC, Mossmann H, Rajewsky K (1994) Deletion of a DNA-Polymerase-βGene Segment in T-cells using cell-type-specific gene targeting. Science 265:103–106

    PubMed  CAS  Google Scholar 

  73. Gu Y, Lu AL (2001) Differential DNA recognition and glycosylase activity of the native human MutY homolog (hMYH) and recombinant hMYH expressed in bacteria. Nucleic Acids Res 29:2666–2674

    PubMed  CAS  Google Scholar 

  74. Gu Y, Parker A, Wilson TM, Bai H, Chang DY, Lu AL (2002) Human MutY homolog, a DNA glycosylase involved in base excision repair, physically and functionally interacts with mismatch repair proteins human MutS homolog 2/human MutS homolog 6. J Biol Chem 277:11135–11142

    PubMed  CAS  Google Scholar 

  75. Guillet M, Boiteux S (2002) Endogenous DNA abasic sites cause cell death in the absence of APN1, APN2 and Rad1/Rad10 in Saccharomyces cerevisiae. EMBO J 21:2833–2841

    PubMed  CAS  Google Scholar 

  76. Hadi MZ, Ginalski K, Nguyen LH, Wilson DM 3rd (2002) Determinants in nuclease specificity of Ape1 and Ape2, human homologues of Escherichia coli exonuclease III. J Mol Biol 316:853–866

    PubMed  CAS  Google Scholar 

  77. Hang B, Singer B, Margison GP, Elder RH (1997) Targeted deletion of alkylpurine-DNA-N-glycosylase in mice eliminates repair of 1,N-6-ethenoadenine and hypoxanthine but not of 3,N-4-ethenocytosine or 8-oxoguanine. Proc Natl Acad Sci USA 94:12869–12874

    PubMed  CAS  Google Scholar 

  78. Hardeland U, Steinacher R, Jiricny J, Schar P (2002) Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover. EMBO J 21:1456–1464

    PubMed  CAS  Google Scholar 

  79. Harrison C, Ketchen A-M, Redhead NJ, O'Sillivan MJ, Melton DW (2002) Replication failure, genome instability, and increased cancer susceptibility in mice with a point mutation in the DNA ligase I gene. Cancer Res 62:4065–4074

    PubMed  CAS  Google Scholar 

  80. Haushalter KA, Stukenberg PT, Kirschner MW, Verdine GL (1999) Identification of a new uracil-DNA glycosylase family by expression cloning using synthetic inhibitors. Curr Biol 9:174–185

    PubMed  CAS  Google Scholar 

  81. Hendrich B, Hardeland U, Ng HH, Jiricny J, Bird A (1999) The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites. Nature 401:301–304

    PubMed  CAS  Google Scholar 

  82. Herceg Z, Wang ZQ (2001) Functions of poly(ADP-ribose) polymerase (PARP) in DNA repair, genomic integrity and cell death. Mutat Res 477:97–110

    PubMed  CAS  Google Scholar 

  83. Hill JW, Hazra TK, Izumi T, Mitra S (2001) Stimulation of human 8-oxoguanine-DNA glycosylase by AP-endonuclease: potential coordination of the initial steps in base excision repair. Nucleic Acids Res 29:430–438

    PubMed  CAS  Google Scholar 

  84. Hirose F, Hotta Y, Yamaguchi M, Matsukage A (1989) Difference in the expression level of DNA polymerase beta among mouse tissues: high expression in the pachytene spermatocyte. Exp Cell Res 181:169–180

    PubMed  CAS  Google Scholar 

  85. Hollis T, Ichikawa Y, Ellenberger T (2000) DNA bending and a flip-out mechanism for base excision by the helix-hairpin-helix DNA glycosylase, Escherichia coli AlkA. EMBO J 19:758–766

    PubMed  CAS  Google Scholar 

  86. Ikeda S, Biswas T, Roy R, Izumi T, Boldogh I, Kurosky A, Sarker AH, Seki S, Mitra S (1998) Purification and characterization of human NTH1, a homolog of Escherichia coli endonuclease III. Direct identification of Lys-212 as the active nucleophilic residue. J Biol Chem 273:21585–21593

    PubMed  CAS  Google Scholar 

  87. Jaruga P, Birincioglu M, Rosenquist TA, Dizdaroglu M (2004) Mouse NEIL1 protein is specific for excision of 2,6-diamino-4-hydroxy-5-formamidopyrimidine and 4,6-diamino-5-formamidopyrimidine from oxidatively damaged DNA. Biochemistry 43:15909–15914

    PubMed  CAS  Google Scholar 

  88. Kakolyris S, Kaklamanis L, Giatromanolaki A, Koujourakis M, Hickson ID, Barzilay G, Turley H, Leek RD, Kanavaros P, Georgoulias V, Gatter KC, Harris AL (1998) Expression and subcellular localisation of human AP endonuclease 1 (HAP1/Ref-1) protein: a basis for its role in human disease. Histopathology 33:561–569

    PubMed  CAS  Google Scholar 

  89. Kedar PS, Kim SJ, Robertson A, Hou E, Prasad R, Horton JK, Wilson SH (2002) Direct interaction between mammalian DNA polymerase beta and proliferating cell nuclear antigen. J Biol Chem 277:31115–31123

    PubMed  CAS  Google Scholar 

  90. Klungland A, Lindahl T (1997) Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1). EMBO J 16:3341–3348

    PubMed  CAS  Google Scholar 

  91. Klungland A, Rosewell I, Hollenbach S, Larsen E, Daly G, Epe B, Seeberg E, Lindahl T, Barnes DE (1999) Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage. Proc Nat Acad Sci USA 96:13300–13305

    PubMed  CAS  Google Scholar 

  92. Krokan HE, Otterlei M, Nilsen H, Kavli B, Skorpen F, Andersen S, Skjelbred C, Akbari M, Aas PA, Slupphaug G (2001) Properties and functions of human uracil-DNA glycosylase from the UNG gene. Prog Nucleic Acid Res Mol Biol 68:365–386

    Article  CAS  Google Scholar 

  93. Kubota Y, Horiuchi S (2003) Independent roles of XRCC1's two BRCT motifs in recovery from methylation damage. DNA Repair (Amst) 2:407–415

    CAS  Google Scholar 

  94. Kubota Y, Nash RA, Klungland A, Schar P, Barnes D, Lindahl T (1996) Reconstitution of DNA base excision-repair with purified human proteins: interaction between DNA polymerase βand the XRCC1 protein. EMBO J 15:6662–6670

    PubMed  CAS  Google Scholar 

  95. Kumar A, Widen S, Williams K, Kedar P, Karpel R, Wilson S (1990) Studies of the domain structure of mammalian DNA polymerase β. Identification of a discrete template binding domain. J Biol Chem 265:2124–2131

    PubMed  CAS  Google Scholar 

  96. Labahn J, Scharer OD, Long A, Ezaz-Nikpay K, Verdine GL, Ellenberger TE (1996) Structural basis for the excision repair of alkylation-damaged DNA. Cell 86:321–329

    PubMed  CAS  Google Scholar 

  97. Lau AY, Scharer OD, Samson L, Verdine GL, Ellenberger E (1998) Crystal structure of a human alkylbase-DNA repair enzyme complexed to DNA: Mechanisms for nucleotide flipping and base excision. Cell 95:249–258

    PubMed  CAS  Google Scholar 

  98. Lau AY, Wyattt MD, Glassner BJ, Samson LD, Ellenberger T (2000) Molecular basis for discriminating between normal and damaged bases by the human alkyladenine glycosylase, AAG. Proc Natl Acad Sci USA 97:13573–13578

    PubMed  CAS  Google Scholar 

  99. Lavrik OI, Prasad R, Sobol RW, Horton JK, Ackerman EJ, Wilson SH (2001) Photoaffinity labeling of mouse fibroblast enzymes by a base excision repair intermediate. Evidence for the role of poly(ADP-ribose) polymerase-1 in DNA repair. J Biol Chem 276:25541–25548

    PubMed  CAS  Google Scholar 

  100. Lee JW, Blanco L, Zhou T, Garcia-Diaz M, Bebenek K, Kunkel TA, Wang Z, Povirk LF (2004) Implication of DNA polymerase λin alignment-based gap filling for nonhomologous DNA end joining in human nuclear extracts. J Biol Chem 279:805–811

    PubMed  CAS  Google Scholar 

  101. Leppard JB, Dong Z, Mackey ZB, Tomkinson AE (2003) Physical and functional interaction between DNA ligase IIIαand poly(ADP-ribose) polymerase 1 in DNA single-strand break repair. Mol Cell Biol 23:5919–5927

    PubMed  CAS  Google Scholar 

  102. Levin DS, Bai W, Yao N, O'Donnell M, Tomkinson AE (1997) An interaction between DNA ligase I and proliferating cell nuclear antigen: implication for Okazaki fragment synthesis and joining. Proc Natl Acad Sci USA 94:12863–12868

    PubMed  CAS  Google Scholar 

  103. Levin DS, McKenna AE, Motycka TA, Matsumoto Y, Tomkinson AE (2000) Interaction between PCNA and DNA ligase I is critical for joining of Okazaki fragments and long-patch base-excision repair. Current Biol 10:919–922

    CAS  Google Scholar 

  104. Lindahl T (1974) An N-glycosidase from Escherichia coli that releases free uracil from DNA containing deaminated cytosine residues. Proc Natl Acad Sci USA 71:3649–3653

    PubMed  CAS  Google Scholar 

  105. Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715

    PubMed  CAS  Google Scholar 

  106. Lindahl T, Andersson A (1972) Rate of chain breakage of apurinic sites in double-stranded DNA. Biochemistry 11:3618–3623

    PubMed  CAS  Google Scholar 

  107. Lindahl T, Karlström O (1973) Heat-induced depyrimidination of DNA. Biochemistry 12:5151–5154

    PubMed  CAS  Google Scholar 

  108. Lindahl T, Nyberg B (1972) Rate of depurination of native deoxyribonucleic acid. Biochemistry 11:3610–3618

    PubMed  CAS  Google Scholar 

  109. Lindahl T, Nyberg B (1974) Heat-induced deamination of cytosine residues in DNA. Biochemistry 13:3405–3410

    PubMed  CAS  Google Scholar 

  110. Lindahl T, Wood RD (1999) Quality control by DNA R=repair. Science 286:1897–1905

    PubMed  CAS  Google Scholar 

  111. Ljungquist S, Kenne K, Olsson L, Sandstrom M (1994) Altered DNA ligase III activity in the CHO EM9 mutant. Mutation Res 314:177–186

    PubMed  CAS  Google Scholar 

  112. Loeb LA, Preston BD (1986) Mutagenesis by apurinic/apyrimidinic sites. Ann Rev Genet 20:201–230

    PubMed  CAS  Google Scholar 

  113. Luna L, Bjoras M, Hoff E, Rognes T, Seeberg E (2000) Cell-cycle regulation, intracellular sorting and induced overexpression of the human NTH1 DNA glycosylase involved in removal of formamidopyrimidine residues from DNA. Mutat Res 460:95–104

    PubMed  CAS  Google Scholar 

  114. Ma Y, Lu H, Tippin B, Goodman MF, Shimazaki N, Koiwai O, Hsieh CL, Schwarz K, Lieber MR (2004) A biochemically defined system for mammalian nonhomologous DNA end joining. Mol Cell 16:701–713

    PubMed  CAS  Google Scholar 

  115. Mackey ZB, Niedergang C, Murcia JM, Leppard J, Au K, Chen J, de Murcia G, Tomkinson AE (1999) DNA ligase III is recruited to DNA strand breaks by a zinc finger motif homologous to that of poly(ADP-ribose) polymerase. Identification of two functionally distinct DNA binding regions within DNA ligase III. J Biol Chem 274:21679–21687

    PubMed  CAS  Google Scholar 

  116. Mackey ZB, Ramos W, Levin DS, Walter CA, McCarrey JR, Tomkinson AE (1997) An alternative splicing event which occurs in mouse pachytene spermatocytes generates a form of DNA ligase III with distinct biochemical properties that may function in meiotic recombination. Mol Cell Biol 17:989–998

    PubMed  CAS  Google Scholar 

  117. Marintchev A, Mullen MA, Maciejewski MW, Pan B, Gryk MR, Mullen GP (1999) Solution structure of the single-strand break repair protein XRCC1 N-terminal domain. Nat Struct Biol 6:884–893

    PubMed  CAS  Google Scholar 

  118. Marintchev A, Robertson A, Dimitriadis EK, Prasad R, Wilson SH, Mullen GP (2000) Domain specific interaction in the XRCC1-DNA polymerase βcomplex. Nucleic Acids Res 28:2049–2059

    PubMed  CAS  Google Scholar 

  119. Marenstein DR, Chan MK, Altamirano A, Basu AK, Boorstein RJ, Cunningham RP, Teebor GW (2003) Substrate specificity of human endonuclease III (hNTH1) Effect of human APE1 on hNTH1 activity. J Biol Chem 278:9005–9012

    PubMed  CAS  Google Scholar 

  120. Marsin S, Vidal AE, Sossou M, Menissier-de Murcia J, Le Page F, Boiteux S, de Murcia G, Radicella JP (2003) Role of XRCC1 in the coordination and stimulation of oxidative DNA damage repair initiated by the DNA glycosylase hOGG1. J Biol Chem 278:44068–44074

    PubMed  CAS  Google Scholar 

  121. Masson M, Niedergang C, Schreiber V, Muller S, Menissier-de Murcia J, de Murcia G (1998) XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage. Mol Cell Biol 18:3563–3571

    PubMed  CAS  Google Scholar 

  122. Matsumoto Y, Kim K (1995) Excision of deoxyribose phosphate residues by DNA polymerase βduring DNA repair. Science 269:699–702

    PubMed  CAS  Google Scholar 

  123. Matsumoto Y, Kim K, Bogenhagen DF (1994) Proliferating cell nuclear antigen-dependent abasic site repair in Xenopus laevis oocytes: an alternative pathway of base excision DNA repair. Mol Cell Biol 14:6187–6197

    PubMed  CAS  Google Scholar 

  124. McCullough AK, Dodson ML, Lloyd RS (1999) Initiation of base excision repair: glycosylase mechanism and structure. Annu Rev Biochem 68:255–285

    PubMed  CAS  Google Scholar 

  125. Ménessier-de Murcia J, Niedergang C, Trucco C, Ricoul M, Dutrillaux B, Mark M, Oliver FJ, Masson M, Dierich A, LeMeur M et al. (1997) Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc Natl Acad Sci USA 94:7303–7307

    Google Scholar 

  126. Millar CB, Guy J, Sansom OJ, Selfridge J, MacDougall E, Hendrich B, Keightley PD, Bishop SM, Clarke AR, Bird A (2002) Enhanced CpG mutability and tumorigenesis in MBD4-deficient mice. Science 297:403–405

    PubMed  CAS  Google Scholar 

  127. Minowa O, Arai T, Hirano M, Monden Y, Nakai S, Fukuda M, Itoh M, Takano H, Hippou Y, Aburatani H et al. (2000) Mmh/Ogg1 gene inactivation results in accumulation of 8-hydroxyguaninein mice. Proc Natl Acad Sci USA 97:4156–4161

    PubMed  CAS  Google Scholar 

  128. Mokkapati SK, Wiederhold L, Hazra TK, Mitra S (2004) Stimulation of DNA glycosylase activity of OGG1 by NEIL1: functional collaboration between two human DNA glycosylases. Biochemistry 43:11596–11604

    PubMed  CAS  Google Scholar 

  129. Mol CD, Arvai AS, Slupphaug G, Kavli B, Alseth I, Krokan HE, Tainer JA (1995) Crystal-structure and mutational analysis of human uracil-dna glycosylase – structural basis for specificity and catalysis. Cell 80:869–878

    PubMed  CAS  Google Scholar 

  130. Mol CD, Izumi T, Mitra S, Tainer JA (2000) DNA-bound structures and mutants reveal abasic DNA binding by APE1 and DNA repair coordination. Nature 403:451–456

    PubMed  CAS  Google Scholar 

  131. Molinete M, Vermeulen W, Burkle A, Menissier-de Murcia J, Kupper JH, Hoeijmakers JHJ, de Murcia G (1993) Overproduction of the poly(Adp-ribose) polymerase DNA-binding domain blocks alkylation-induced DNA-repair synthesis in mammalian-cells. EMBO J 12:2109–2117

    PubMed  CAS  Google Scholar 

  132. Montecucco A, Rossi R, Levin DS, Gary R, Park MS, Motycka TA, Giarrocchi G, Villa A, Biamonti G, Tomkinson A (1998) DNA ligase I is recruited to sites of DNA replication by an interaction with proliferating cell nuclear antigen: identification of a common targeting mechanism for the assembly of replication factories. EMBO J 17:3786–3795

    PubMed  CAS  Google Scholar 

  133. Moore DJ, Taylor RM, Clements P, Caldecott KW (2000) Mutation of a BRCT domain selectively disrupts DNA single-strand break repair in noncycling Chinese hamster ovary cells. Proc Natl Acad Sci USA 97:13649–13654

    PubMed  CAS  Google Scholar 

  134. Muller-Weeks S, Mastran B, Caradonna S (1998) The nuclear isoform of the highly conserved human uracil-DNA glycosylase is an Mr 36000 phosphoprotein. J Biol Chem 273:21909–21917

    PubMed  CAS  Google Scholar 

  135. Nagelhus TA, Haug T, Singh KK, Keshav KF, Skorpen F, Otterlei M, Bharati S, Lindmo T, Benichou S, Benarous R, Krokan HE (1997) A sequence in the N-terminal region of human uracil-DNA glycosylase with homology to XPA interacts with the C-terminal part of the 34-kDa subunit of replication protein A. J Biol Chem 272:6561–6566

    PubMed  CAS  Google Scholar 

  136. Nash RA, Caldecott KW, Barnes DE, Lindahl T (1997) XRCC1 protein interacts with one of two distinct forms of DNA ligase III. Biochemistry 36:5207–5211

    PubMed  CAS  Google Scholar 

  137. Neddermann P, Gallinari P, Lettieri T, Schmid D, Truong O, Hsuan JJ, Wiebauer K, Jiricny J (1996) Cloning and expression of human G/T mismatch-specific thymine-DNA glycosylase. J Biol Chem 271:12767–12774

    PubMed  CAS  Google Scholar 

  138. Nilsen H, Rosewell I, Robins P, Skjelbred CF, Andersen S, Slupphaug G, Daly G, Krokan HE, Lindahl T, Barnes DE (2000) Uracil-DNA glycosylase (UNG)-deficient mice reveal a primary role of the enzyme during DNA replication. Molecular Cell 5:1059–1065

    PubMed  CAS  Google Scholar 

  139. Norman DP, Bruner SD, Verdine GL (2001) Coupling of substrate recognition and catalysis by a human base-excision DNA repair protein. J Am Chem Soc 123:359–360

    PubMed  CAS  Google Scholar 

  140. Ocampo MT, Chaung W, Marenstein DR, Chan MK, Altamirano A, Basu AK, Boorstein RJ, Cunningham RP, Teebor GW (2002) Targeted deletion of mNth1 reveals a novel DNA repair enzyme activity. Mol Cell Biol 22:6111–6121

    PubMed  CAS  Google Scholar 

  141. O'Connor TR, Laval J (1991) Human cDNA expressing a functional DNA glycosylase excising 3-methyladenine and 7-methylguanine. Biochem Biophys Res Commun 176:1170–1177

    PubMed  Google Scholar 

  142. Okano S, Lan L, Caldecott KW, Mori T, Yasui A (2003) Spatial and temporal cellular responses to single-strand breaks in human cells. Mol Cell Biol 23:3974–3981

    PubMed  CAS  Google Scholar 

  143. Olsen LC, Aasland R, Wittwer CU, Krokan HE, Helland DE (1989) Molecular cloning of human uracil-DNA glycosylase, a highly conserved DNA repair enzyme. EMBO J 8:3121–3125

    PubMed  CAS  Google Scholar 

  144. Otterlei M, Warbrick E, Nagelhus TA, Haug T, Slupphaug G, Akbari M, Aas PA, Steinsbekk K, Bakke O, Krokan HE (1999) Post-replicative base excision repair in replication foci. EMBO J 18:3834–8344

    PubMed  CAS  Google Scholar 

  145. Oyama M, Wakasugi M, Hama T, Hashidume H, Iwakami Y, Imai R, Hoshino S, Morioka H, Ishigaki Y, Nikaido O, Matsunaga T (2004) Human NTH1 physically interacts with p53 and proliferating cell nuclear antigen. Biochem Biophys Res Commun 321:183–191

    PubMed  CAS  Google Scholar 

  146. Parikh SS, Mol CD, Hosfield DJ, Tainer JA (1999) Envisioning the molecular choreography of DNA base excision repair. Curr Opin Struct Biol 9:37–47

    PubMed  CAS  Google Scholar 

  147. Parikh SS, Mol CD, Slupphaug G, Bharati S, Krokan HE, Tainer JA (1998) Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA. EMBO J 17:5214–5226

    PubMed  CAS  Google Scholar 

  148. Parikh SS, Walcher G, Jones GD, Slupphaug G, Krokan HE, Blackburn GM, Tainer JA (2000) Uracil-DNA glycosylase-DNA substrate and product structures: Conformational strain promotes catalytic efficiency by coupled stereoelectronic effects. Proc Natl Acad Sci USA 97:5083–5088

    PubMed  CAS  Google Scholar 

  149. Parker A, Gu Y, Mahoney W, Lee SH, Singh KK, Lu AL (2001) Human homolog of the MutY repair protein (hMYH) physically interacts with proteins involved in long patch DNA base excision repair. J Biol Chem 276:5547–5555

    PubMed  CAS  Google Scholar 

  150. Parsons JL, Dianova II, Dianov GL (2004) APE1 is the major 3′-phosphoglycolate activity in human cell extracts. Nucleic Acids Res 32:3531–3536

    PubMed  CAS  Google Scholar 

  151. Parsons JL, Dianova II, Dianov GL (2005) APE1-dependent repair of DNA single-strand breaks containing 3′-end 8-oxoguanine. Nucleic Acids Res 33:2204–2209

    PubMed  CAS  Google Scholar 

  152. Parsons JL, Dianova I, Allinson SL, Dianov G (2005) Poly(ADP-ribose) polymerase-1 protects excessive DNA strand breaks from deterioration during repair in human cell extracts. FEBS J 272:2012–2021

    PubMed  CAS  Google Scholar 

  153. Perkins E, Sun D, Nguyen A, Tulac S, Francesco M, Tavana H, Nguyen H, Tugendreich S, Barthmaier P, Couto J et al. (2001) Novel inhibitors of poly(ADP-ribose) polymerase/PARP1 and PARP2 identified using a cell-based screen in yeast. Cancer Res 61:4175–4183

    PubMed  CAS  Google Scholar 

  154. Petronzelli F, Riccio A, Markham GD, Seeholzer SH, Stoerker J, Genuardi M, Yeung AT, Matsumoto Y, Bellacosa A (2000) Biphasic kinetics of the human DNA repair protein MED1 (MBD4), a mismatch-specific DNA N-glycosylase. J Biol Chem 275:32422–32429

    PubMed  CAS  Google Scholar 

  155. Podlutsky AJ, Dianova II, Wilson SH, Bohr VA, Dianov GL (2001) DNA synthesis and dRPase activities of polymerase beta are both essential for single-nucleotide patch base excision repair in mammalian cell extracts. Biochemistry 40:809–813

    PubMed  CAS  Google Scholar 

  156. Podlutsky AJ, Dianova II, Podust VN, Bohr VA, Dianov GL (2001) Human DNA polymerase beta initiates DNA synthesis during long-patch repair of reduced AP sites in DNA. EMBO J 20:1477–1482

    PubMed  CAS  Google Scholar 

  157. Prasad R, Singhal RK, Srivastava DK, Molina JT, Tomkinson AE, Wilson SH (1996) Specific interaction of DNA polymerase beta and DNA ligase I in a multiprotein base excision repair complex from bovine testis. J Biol Chem 271:16000–16007

    PubMed  CAS  Google Scholar 

  158. Prigent C, Satoh MS, Daly G, Barnes DE, Lindahl T (1994) Aberrant DNA repair and DNA replication due to an inherited enzymatic defect in human DNA ligase I. Mol Cell Biol 14:310–317

    PubMed  CAS  Google Scholar 

  159. Radicella JP, Dherin C, Desmaze C, Fox MS, Boiteux S (1997) Cloning and characterization of hOGG1, a human homolog of the OGG1 gene of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 94:8010–8015

    PubMed  CAS  Google Scholar 

  160. Ramana CV, Boldogh I, Izumi T, Mitra S (1998) Activation of apurinic/apyrimidinic endonuclease in human cells by reactive oxygen species and its correlation with their adaptive response to genotoxicity of free radicals. Proc Natl Acad Sci USA 95:5061–5066

    PubMed  CAS  Google Scholar 

  161. Ranalli TA, DeMott MS, Bambara RA (2002) Mechanism underlying replication protein A stimulation of DNA ligase I. J Biol Chem 277:1719–1727

    PubMed  CAS  Google Scholar 

  162. Rivkees SA, Kelley MR (1994) Expression of a multifunctional DNA-repair enzyme gene, apurinic/apyrimidinic endonuclease (Ape-Ref-1) in the suprachiasmatic, supraoptic and paraventricular nuclei. Brain Res 666:137–142

    PubMed  CAS  Google Scholar 

  163. Robson CN, Hickson ID (1991) Isolation of cDNA clones encoding a human apurinic/ apyrimidinic endonuclease that corrects DNA repair and mutagenesis defects in E. coli xth (exonuclease III) mutants. Nucleic Acids Res 19:5519–5523

    PubMed  CAS  Google Scholar 

  164. Roldan-Arjona T, Wei YF, Carter KC, Klungland A, Anselmino C, Wang RP, Augustus M, Lindahl T (1997) Molecular cloning and functional expression of a human cDNA encoding the antimutator enzyme 8-hydroxyguanine-DNA glycosylase. Proc Natl Acad Sci USA 94:8016–8020

    PubMed  CAS  Google Scholar 

  165. Rosenquist TA, Zaika E, Fernandes AS, Zharkov DO, Miller H, Grollman AP (2003) The novel DNA glycosylase, NEIL1, protects mammalian cells from radiation-mediated cell death. DNA Repair (Amst) 2:581–591

    CAS  Google Scholar 

  166. Rosenquist TA, Zharkov DO, Grollman AP (1997) Cloning and characterization of a mammalian 8-oxoguanine DNA glycosylase. Proc Natl Acad Sci USA 94:7429–7434

    PubMed  CAS  Google Scholar 

  167. Russo MT, De Luca G, Degan P, Parlanti E, Dogliotti E, Barnes DE, Lindahl T, Yang H, Miller JH, Bignami M (2004) Accumulation of the oxidative base lesion 8-hydroxyguanine in DNA of tumor-prone mice defective in both the Myh and Ogg1 DNA glycosylases. Cancer Res 64:4411–4414

    PubMed  CAS  Google Scholar 

  168. Samson L, Derfler B, Boosalis M, Call K (1991) Cloning and characterization of a 3-methyladenine DNA glycosylase cDNA from human-cells whose gene maps to chromosome-16. Proc Natl Acad Sci of the USA 88:9127–9131

    PubMed  CAS  Google Scholar 

  169. Sanderson RJ, Mosbaugh DW (1998) Fidelity and mutational specificity of uracil-initiated base excision DNA repair synthesis in human glioblastoma cell extracts. J Biol Chem 273:24822–24831

    PubMed  CAS  Google Scholar 

  170. Sarker AH, Ikeda S, Nakano H, Terato H, Ide H, Imai K, Akiyama K, Tsutsui K, Bo Z, Kubo K et al. (1998) Cloning and characterization of a mouse homologue (mNthl1) of Escherichia coli endonuclease III. J Mol Biol 282:761–774

    PubMed  CAS  Google Scholar 

  171. Satoh MS, Lindahl T (1992) Role of poly(ADP-ribose) formation in DNA repair. Nature 356:356–358

    PubMed  CAS  Google Scholar 

  172. Satoh MS, Poirier GG, Lindahl T (1993) NAD(+)-dependent repair of damaged DNA by human cell extracts. J Biol Chem 268:5480–5487

    PubMed  CAS  Google Scholar 

  173. Savva R, McAuley-Hecht K, Brown T, Pearl L (1995) The structural basis of specific base-excision repair by uracil-DNA glycosylase. Nature 373:487–493

    PubMed  CAS  Google Scholar 

  174. Sawaya MR, Prasad R, Wilson SH, Kraut J, Pelletier H (1997) Crystal structures of human DNA polymerase beta complexed with gapped and nicked DNA: evidence for an induced fit mechanism. Biochemistry 36:11205–11215

    PubMed  CAS  Google Scholar 

  175. Sawyer DE, Van Houten B (1999) Repair of DNA damage in mitochondria. Mutat Res-DNA Repair 434:161–176

    PubMed  CAS  Google Scholar 

  176. Shibata A, Kamada N, Masumura K, Nohmi T, Kobayashi S, Teraoka H, Nakagama H, Sugimura T, Suzuki H, Masutani M (2005) Parp-1 deficiency causes an increase of deletion mutations and insertions/rearrangements in vivo after treatment with an alkylating agent. Oncogene 24:1328–1337

    PubMed  CAS  Google Scholar 

  177. Sleeth KM, Robson RL, Dianov GL (2004) Exchangeability of mammalian DNA ligases between base excision repair pathways. Biochemistry 43:12924–12930

    PubMed  CAS  Google Scholar 

  178. Slupphaug G, Markussen FH, Olsen LC, Aasland R, Aarsaether N, Bakke O, Krokan HE, Helland DE (1993) Nuclear and mitochondrial forms of human uracil-DNA glycosylase are encoded by the same gene. Nucleic Acids Res 21:2579–2584

    PubMed  CAS  Google Scholar 

  179. Slupska MM, Baikalov C, Luther WM, Chiang JH, Wei YF, Miller JH (1996) Cloning and sequencing a human homolog (hMYH) of the Escherichia coli mutY gene whose function is required for the repair of oxidative DNA damage. J Bacteriol 178:3885–3892

    PubMed  CAS  Google Scholar 

  180. Slupska MM, Luther WM, Chiang JH, Yang HJ, Miller JH (1999) Functional expression of hMYH, a human homolog of the Escherichia coli MutY protein. J Bacteriol 181:6210–6213

    PubMed  CAS  Google Scholar 

  181. Smith S (2001) The world according to PARP. Trends in Biochemical Sciences 26:174–179

    PubMed  CAS  Google Scholar 

  182. Sobol RW, Foley JF, Nyska A, Davidson MG, Wilson SH (2003) Regulated over-expression of DNA polymerase βmediates early onset cataract in mice. DNA Repair (Amst) 2:609–622

    CAS  Google Scholar 

  183. Sobol RW, Horton JK, Kuhn R, Gu H, Singhal RK, Prasad R, Rajewsky K, Wilson SH (1996) Requirement of mammalian DNA polymerase-b in base-excision repair. Nature 379:183–186

    PubMed  CAS  Google Scholar 

  184. Soderhall S (1976) DNA ligases during rat liver regeneration. Nature 260:640–642

    PubMed  CAS  Google Scholar 

  185. Takao M, Kanno S, Shiromoto T, Hasegawa R, Ide H, Ikeda S, Sarker AH, Seki S, Xing JZ, Le XC et al. (2002) Novel nuclear and mitochondrial glycosylases revealed by disruption of the mouse Nth1 gene encoding an endonuclease III homolog for repair of thymine glycols. Embo J 21:3486–3493

    PubMed  CAS  Google Scholar 

  186. Taylor RM, Moore DJ, Whitehouse J, Johnson P, Caldecott KW (2000) A cell cycle-specific requirement for the XRCC1 BRCT II domain during mammalian DNA strand break repair. Mol Cell Biol 20:735–740

    PubMed  CAS  Google Scholar 

  187. Taylor RM, Thistlethwaite A, Caldecott KW (2002) Central role for the XRCC1 BRCT I domain in mammalian DNA single-strand break repair. Mol Cell Biol 22:2556–2563

    PubMed  CAS  Google Scholar 

  188. Taylor RM, Whitehouse CJ, Caldecott KW (2000) The DNA ligase III zinc finger stimulates binding to DNA secondary structure and promotes end joining. Nucleic Acids Res 28:3558–3563

    PubMed  CAS  Google Scholar 

  189. Taylor RM, Whitehouse J, Cappelli E, Frosina G, Caldecott KW (1998) Role of the DNA ligase III zinc finger in polynucleotide binding and ligation. Nucleic Acids Res 26:4804–4810

    PubMed  CAS  Google Scholar 

  190. Tebbs RS, Flannery ML, Meneses JJ, Hartmann A, Tucker JD, Thompson LH, Cleaver JE, Pedersen RA (1999) Requirement for the Xrcc1 DNA base excision repair gene during early mouse development. Dev Biol 208:513–529

    PubMed  CAS  Google Scholar 

  191. Tell G, Crivellato E, Pines A, Paron I, Pucillo C, Manzini G, Bandiera A, Kelley MR, Di Loreto C, Damante G (2001) Mitochondrial localization of APE/Ref-1 in thyroid cells. Mutat Res, 485:143–152

    PubMed  CAS  Google Scholar 

  192. Tentori L, Balduzzi A, Portarena I, Levati L, Vernole P, Gold B, Bonmassar E, Graziani G (2001) Poly (ADP-ribose) polymerase inhibitor increases apoptosis and reduces necrosis induced by a DNA minor groove binding methyl sulfonate ester. Cell Death Differ 8:817–828

    CAS  Google Scholar 

  193. Thayer MM, Ahern H, Xing DX, Cunningham RP, Tainer JA (1995) Novel DNA-Binding Motifs in the DNA-repair enzyme endonuclease-III crystal-structure. EMBO J 14:4108–4120

    PubMed  CAS  Google Scholar 

  194. Thompson LH, Brookman KW, Jones JJ, Allen SA, Carrano AV (1990) Molecular cloning of the human XRCC1 gene, which corrects defective DNA repair and sister chromatid exchange. Mol Cell Biol 10:6160–6171

    PubMed  CAS  Google Scholar 

  195. Thompson LH, West MG (2000) XRCC1 keeps DNA from getting stranded. Mutat Res 459:1–18

    PubMed  CAS  Google Scholar 

  196. Tini M, Benecke A, Um SJ, Torchia J, Evans RM, Chambon P (2002) Association of CBP/p300 acetylase and thymine DNA glycosylase links DNA repair and transcription. Mol Cell 9:265–277

    PubMed  CAS  Google Scholar 

  197. Tom S, Henricksen LA, Park MS, Bambara RA (2001) DNA ligase I and proliferating cell nuclear antigen form a functional complex. J Biol Chem 276:24817–24825

    PubMed  CAS  Google Scholar 

  198. Tomkinson AE, Chen L, Dong Z, Leppard JB, Levin DS, Mackey ZB, Motycka TA (2001) Completion of base excision repair by mammalian DNA ligases. Prog Nucleic Acid Res Mol Biol 68:151–164

    CAS  Google Scholar 

  199. Tomkinson AE, Levin DS (1997) Mammalian DNA ligases. Bioessays 19:893–901

    PubMed  CAS  Google Scholar 

  200. Tomkinson AE, Mackey ZB (1998) Structure and function of mammalian DNA ligases. Mutat Res 407:1–9

    CAS  Google Scholar 

  201. Trucco C, de Oliver FJMG, de Menissier MJ (1998) DNA repair defect in poly(ADP-ribose) polymerase-deficient cell lines. Nucleic Acids Res 26:2644–2649

    PubMed  CAS  Google Scholar 

  202. Tsuchimoto D, Sakai Y, Sakumi K, Nishioka K, Sasaki M, Fujiwara T, Nakabeppu Y (2001) Human APE2 protein is mostly localized in the nuclei and to some extent in the mitochondria, while nuclear APE2 is partly associated with proliferating cell nuclear antigen. Nucleic Acids Res 29:2349–23460

    PubMed  CAS  Google Scholar 

  203. Vidal AE, Boiteux S, Hickson ID, Radicella JP (2001) XRCC1 coordinates the initial and late stages of DNA abasic site repair through protein-protein interactions. EMBO J 20:6530–6539

    PubMed  CAS  Google Scholar 

  204. Vidal AE, Hickson ID, Boiteux S, Radicella JP (2001) Mechanism of stimulation of the DNA glycosylase activity of hOGG1 by the major human AP endonuclease: bypass of the AP lyase activity step. Nucleic Acids Res 29:1285–1292

    PubMed  CAS  Google Scholar 

  205. Vodenicharov MD, Sallmann FR, Satoh MS, Poirier GG (2000) Base excision repair is efficient in cells lacking poly(ADP-ribose) polymerase 1. Nucleic Acids Res 28:3887–3896

    PubMed  CAS  Google Scholar 

  206. Waga S, Stillman B (1998) DNA replication fork in eukaryotic cells. Annu Rev Biochem 67:721–751

    PubMed  CAS  Google Scholar 

  207. Wallace SS (1998) Enzymatic processing of radiation-induced free radical damage in DNA. Radiat Res 150:S60–S79

    PubMed  CAS  Google Scholar 

  208. Wang ZQ, Stingl L, Morrison C, Jantsch M, Los M, Schulze-Osthoff K, Wagner EF (1997) PARP is important for genomic stability but dispensable in apoptosis. Genes & Development 11:2347–2358

    PubMed  CAS  Google Scholar 

  209. Waters TR, Gallinari P, Jiricny J, Swann PF (1999) Human thymine DNA glycosylase binds to apurinic sites in DNA but is displaced by human apurinic endonuclease 1. J Biol Chem 274:67–74

    PubMed  CAS  Google Scholar 

  210. Webster ADB, Barnes DE, Arlett CF, Lehmann AR, Lindahl T (1992) Growth retardation and immunodeficiency in a patient with mutations in the DNA ligase I gene. Lancet 339:1508–1509

    PubMed  CAS  Google Scholar 

  211. Wei YF, Robins P, Carter K, Caldecott K, Pappin DJ, Yu GL, Wang RP, Shell BK, Nash RA, Schar P et al. (1995) Molecular cloning and expression of human cDNAs encoding a novel DNA ligase IV and DNA ligase III, an enzyme active in DNA repair and recombination. Mol Cell Biol 15:3206–3216

    PubMed  CAS  Google Scholar 

  212. Wiebauer K, Jiricny J (1990) Mismatch-specific thymine DNA glycosylase and DNA polymerase βmediate the correction of G-T mispairs in nuclear extracts from human cells. Proc Natl Acad Sci USA 87:5842–5845

    PubMed  CAS  Google Scholar 

  213. Wiederhold L, Leppard JB, Kedar P, Karimi-Busheri F, Rasouli-Nia A, Weinfeld M, Tomkinson AE, Izumi T, Prasad R, Wilson SH et al. (2004) AP endonuclease-independent DNA base excision repair in human cells. Mol Cell 15:209–220

    PubMed  CAS  Google Scholar 

  214. Wilson DM 3rd, Takeshita M, Grollman AP, Demple B (1995) Incision activity of human apurinic endonuclease (Ape) at abasic site analogs in DNA. J Biol Chem 270:16002–16007

    PubMed  CAS  Google Scholar 

  215. Wilson DM, Barsky D (2001) The major human abasic endonuclease: formation, consequences and repair of abasic lesions in DNA. Mutat Res 485:283–307

    PubMed  CAS  Google Scholar 

  216. Wilson TM, Rivkees SA, Deutsch WA, Kelley MR (1996) Differential expression of the apurinic/apyrimidinic endonuclease (APE/ref-1) multifunctional DNA base excision repair gene during fetal development and in adult rat brain and testis. Mutat Res 362:237–248

    PubMed  CAS  Google Scholar 

  217. Wood RD, Mitchell M, Sgouros J, Lindahl T (2001) Human DNA repair genes. Science 291:1284–1289

    PubMed  CAS  Google Scholar 

  218. Xanthoudakis S, Graham M, Wang F, Pan YE, Curran T (1992) Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme. EMBO J 11:3323–3335

    PubMed  CAS  Google Scholar 

  219. Xanthoudakis S, Smeyne RJ, Wallace JD, Curran T (1996) The redox/DNA repair protein, Ref-1, is essential for early embryonic development in mice. Proc Natl Acad USA 93:8919–8923

    PubMed  CAS  Google Scholar 

  220. Xie Y, Yang H, Cunanan C, Okamoto K, Shibata D, Pan J, Barnes DE, Lindahl T, McIlhatton M, Fishel R, Miller JH (2004) Deficiencies in mouse Myh and Ogg1 result in tumor predisposition and G to T mutations in codon 12 of the K-ras oncogene in lung tumors. Cancer Res 64:3096–3102

    PubMed  CAS  Google Scholar 

  221. Yang HJ, Clendenin WM, Wong D, Demple B, Slupska MM, Chiang JH, Miller JH (2001) Enhanced activity of adenine-DNA glycosylase by apurinic/apyrimidinic endonuclease (APE1) in mammalian base excision repair of an A/GO mismatch. Nucleic Acids Res 29:743–752

    PubMed  CAS  Google Scholar 

  222. Zhang QM, Dianov GL (2005) DNA repair fidelity of base excision repair pathways in human cell extracts. DNA Repair (Amst) 4:263–270

    CAS  Google Scholar 

  223. Zharkov DO, Rosenquist TA, Gerchman SE, Grollman AP (2000) Substrate specificity and reaction mechanism of murine 8-oxoguanine-DNA glycosylase. J Biol Chem 275:28607–28617

    PubMed  CAS  Google Scholar 

  224. Zmudzka BZ, Fornace A, Collins J, Wilson SH (1988) Characterization of DNA polymerase βmRNA: cell-cycle and growth response in cultured human cells. Nucleic Acids Res 16:9587–9596

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grigory L. Dianov .

Editor information

Dirk-Henner Lankenau

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dianov, G.L., Allinson, S.L. (2005). DNA Base Damage Recognition and Processing. In: Lankenau, DH. (eds) Genome Integrity. Genome Dynamics and Stability, vol 1. Springer, Berlin, Heidelberg . https://doi.org/10.1007/7050_007

Download citation

Publish with us

Policies and ethics