Skip to main content

An Overview of Recent Research on the Role of Dissolved Organic Matter on the Environmental Fate of Pesticides in Soils

  • Chapter
  • First Online:
Pesticides in Soils

Abstract

Pesticides reach the soil after direct application to the soil surface or after deposition from the treated crops. The environmental behaviour of pesticides in soil has been usually related to organic carbon and clay contents of soils. However, interest is growing in knowing how pesticide fate may be modified by dissolved organic matter (DOM) coming from a variety of sources, such as irrigation with solutions rich in DOM, leachates from organic amendments or plant litter. In this chapter the current extent of DOM impact on pesticide adsorption/desorption, transport or dissipation in soil is reviewed first and the findings contrasted with DOM origin or properties. The consequences of DOM on pesticide crop uptake are also discussed. Main gaps in knowledge stem from the complex composition of DOM originating from a wide variety of sources and its specific interactions with pesticides and soils that deploy an ample range of properties. A final summary of findings and implications for future research is also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allagui A, Bahrouni H, Youssef MS (2018) Deposition of pesticide to the soil and plant retention during crop spraying: the art state. J Agric Sci 10:104. https://doi.org/10.5539/jas.v10n12p104

    Article  Google Scholar 

  2. Silva V, Mol HGJ, Zomer P, Tienstra M, Ritsema CJ, Geissen V (2019) Pesticide residues in European agricultural soils–a hidden reality unfolded. Sci Total Environ 653:1532–1545. https://doi.org/10.1016/j.scitotenv.2018.10.441

    Article  CAS  Google Scholar 

  3. Yang X, Van Der Zee SEATM, Gai L, Wesseling JG, Ritsema CJ, Geissen V (2016) Integration of transport concepts for risk assessment of pesticide erosion. Sci Total Environ 551–552:563–570. https://doi.org/10.1016/j.scitotenv.2016.02.058

    Article  CAS  Google Scholar 

  4. Hanedar A, Güneş E, Kaykioğlu G, Çelik SU, Cabi E (2019) Presence and distributions of POPS in soil, atmospheric deposition, and bioindicator samples in an industrial-agricultural area in Turkey. Environ Monit Assess 191:42. https://doi.org/10.1007/s10661-018-7159-4

    Article  CAS  Google Scholar 

  5. Teklu BM, Adriaanse PI, Van den Brink PJ (2016) Monitoring and risk assessment of pesticides in irrigation systems in Debra Zeit, Ethiopia. Chemosphere 161:280–291. https://doi.org/10.1016/j.chemosphere.2016.07.031

    Article  CAS  Google Scholar 

  6. Calvet R (1989) Adsorption of organic chemicals in soils. Environ Health Perspect 83:145–177. https://doi.org/10.1289/ehp.8983145

    Article  CAS  Google Scholar 

  7. Wauchope RD, Yeh S, Linders JBHJ, Kloskowski R, Tanaka K, Rubin B, Katayama A, Kördel W, Gerstl Z, Lane M, Unsworth JB (2002) Pesticide soil sorption parameters: theory, measurement, uses, limitations and reliability. Pest Manag Sci 58:419–445. https://doi.org/10.1002/ps.489

    Article  CAS  Google Scholar 

  8. Sadegh-Zadeh F, Wahid SA, Jalili B (2017) Sorption, degradation and leaching of pesticides in soils amended with organic matter: a review. Adv Environ Technol 2:119–132. https://doi.org/10.22104/AET.2017.1740.1100

    Article  Google Scholar 

  9. Liu Y, Lonappan L, Brar SK, Yang S (2018) Impact of biochar amendment in agricultural soils on the sorption, desorption, and degradation of pesticides: a review. Sci Total Environ 645:210–222. https://doi.org/10.1016/j.scitotenv.2018.07.099

    Article  CAS  Google Scholar 

  10. Siedt M, Schaffer A, Smith KEC, Nabel M, Ross-Nickoll M, van Dongen JT (2021) Comparing straw, compost, and biochar regarding their suitability as agricultural soil amendments to affect soil structure, nutrient leaching, microbial communities, and the fate of pesticides. Sci Total Environ 751:141607. https://doi.org/10.1016/j.scitotenv.2020.141607

    Article  CAS  Google Scholar 

  11. Wang B, Liu C, Chen YW, Dong FQ, Chen S, Zhang D, Zhu JP (2018) Structural characteristics, analytical techniques and interactions with organic contaminants of dissolved organic matter derived from crop straw: a critical review. RSC Adv 8:36927–36938. https://doi.org/10.1039/c8ra06978f

    Article  CAS  Google Scholar 

  12. Peña A, Delgado-Moreno L, Rodríguez-Liébana JA (2020) A review of the impact of wastewater on the fate of pesticides in soils: effect of some soil and solution properties. Sci Total Environ 718:134468. https://doi.org/10.1016/j.scitotenv.2019.134468

    Article  CAS  Google Scholar 

  13. Olk DC, Bloom PR, Perdue EM, Guillemette F, Podgorski DC, Spencer RGM (2019) Environmental and agricultural relevance of humic fractions extracted by alkali from soils and natural waters. J Environ Qual 48:217–232. https://doi.org/10.2134/jeq2019.02.0041

    Article  CAS  Google Scholar 

  14. Kalbitz K, Knappe S (1997) Einfluß der Bodeneigenschaften auf die Freisetzung der gelösten organischen Substanz (DOM) aus dem Oberboden. Z Pflanzenernähr Bodenkd 160:475–483. https://doi.org/10.1002/jpln.19971600407

    Article  CAS  Google Scholar 

  15. Delgado-Moreno L, Wu L, Gan J (2010) Effect of dissolved organic carbon on sorption of pyrethroids to sediments. Environ Sci Technol 44:8473–8478. https://doi.org/10.1021/es102277h

    Article  CAS  Google Scholar 

  16. Polubesova T, Chefetz B (2014) DOM–affected transformation of contaminants on mineral surfaces: a review. Crit Rev Environ Sci Tec 44:223–254. https://doi.org/10.1080/10643389.2012.710455

    Article  CAS  Google Scholar 

  17. Borggaard OK, Holm PE, Strobel BW (2019) Potential of dissolved organic matter (DOM) to extract As, Cd, Co, Cr, Cu, Ni, Pb and Zn from polluted soils: a review. Geoderma 343:235–246. https://doi.org/10.1016/j.geoderma.2019.02.041

    Article  CAS  Google Scholar 

  18. Lei HJ, Pan HW, Han YP, Liu X, Xu JX (2015) Using three–dimensional fluorescence spectrum technology to analyze the effects of natural dissolved organic matter on the pesticide residues in the soil. Spectrosc Spect Anal 35:1926–1932. https://doi.org/10.3964/j.issn.1000-0593(2015)07-1926-07

    Article  CAS  Google Scholar 

  19. Novotny EH, Turetta APD, Resende MF, Rebello CM (2020) The quality of soil organic matter, accessed by 13C solid state nuclear magnetic resonance, is just as important as its content concerning pesticide sorption. Environ Pollut 266:115298. https://doi.org/10.1016/j.envpol.2020.115298

    Article  CAS  Google Scholar 

  20. Zsolnay Á (2003) Dissolved organic matter: artefacts, definition and functions. Geoderma 113:187–210. https://doi.org/10.1016/S0016-7061(02)00361-0

    Article  CAS  Google Scholar 

  21. Minor EC, Swenson MM, Mattson BM, Oyler AR (2014) Structural characterization of dissolved organic matter: a review of current techniques for isolation and analysis. Environ Sci Proc Imp 16:2064–2079. https://doi.org/10.1039/c4em00062e

    Article  CAS  Google Scholar 

  22. Chen W, Westerhoff P, Leenheer JA, Booksh K (2003) Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environ Sci Technol 37:5701–5710. https://doi.org/10.1021/es034354c

    Article  CAS  Google Scholar 

  23. Devarojan D, Liang L, Gu B, Brooks SC, Parks JM, Smith JC (2020) Molecular dynamics simulation of the structures, dynamics and aggregation of dissolved organic matter. Environ Sci Technol 54:13527–13537. https://doi.org/10.1021/acs.est.0c01176

    Article  CAS  Google Scholar 

  24. Zsolnay Á (1996) Dissolved humus in soil waters. In: Piccolo A (ed) Humic substances in terrestrial ecosystems. Elsevier, Amsterdam, pp 171–224. https://doi.org/10.1016/B978-044481516-3/50005-0

    Chapter  Google Scholar 

  25. Chantigny MH (2003) Dissolved and water-extractable organic matter in soils: a review on the influence of land use and management practices. Geoderma 113:357–380. https://doi.org/10.1016/S0016-7061(02)00370-1

    Article  CAS  Google Scholar 

  26. Bolan NS, Adriano DC, Kunhikrishnan A, James T, McDowell R, Senesi N (2011) Dissolved organic matter: biogeochemistry, dynamics, and environmental significance in soils. Adv Agron 110:1–75. https://doi.org/10.1016/B978-0-12-385531-2.00001-3

    Article  CAS  Google Scholar 

  27. García-Delgado C, Marín-Benito JM, Sánchez-Martín MJ, Rodríguez-Cruz MS (2020) Organic carbon nature determines the capacity of organic amendments to adsorb pesticides in soil. J Hazard Mater 390:122162. https://doi.org/10.1016/j.jhazmat.2020.122162

    Article  CAS  Google Scholar 

  28. Li HY, Wang H, Wang HT, Xin PY, Xu XH, Ma Y, Liu WP, Teng CY, Jiang CL, Lou LP, Arnold W, Cralle L, Zhu YG, Chu JF, Gilbert JA, Zhang ZJ (2018) The chemodiversity of paddy soil dissolved organic matter correlates with microbial community at continental scales. Microbiome 6:187. https://doi.org/10.1186/s40168-018-0561-x

    Article  Google Scholar 

  29. Klucáková M (2018) Size and charge evaluation of standard humic and fulvic acids as crucial factors to determine their environmental behavior and impact. Front Chem 6:235. https://doi.org/10.3389/fchem.2018.00235

    Article  CAS  Google Scholar 

  30. McDowell WH (2003) Dissolved organic matter in soils–future directions and unanswered questions. Geoderma 113:179–186. https://doi.org/10.1016/S0016-7061(02)00360-9

    Article  CAS  Google Scholar 

  31. Adeleke R, Nwangburuka C, Oboirien B (2017) Origins, roles and fate of organic acids in soils: a review. S Afr J Bot 108:393–406. https://doi.org/10.1016/j.sajb.2016.09.002

    Article  CAS  Google Scholar 

  32. Xiao X, Chen B, Chen Z, Zhu L, Schnoor JL (2018) Insight into multiple and multilevel structures of biochars and their potential environmental applications: a critical review. Environ Sci Technol 52:5027–5047. https://doi.org/10.1021/acs.est.7b06487

    Article  CAS  Google Scholar 

  33. Deb SK, Shukla MK (2011) A review of dissolved organic matter transport processes affecting soil and environmental quality. J Environ Anal Toxicol 1:1000106. https://doi.org/10.4172/2161-0525.1000106

    Article  Google Scholar 

  34. Li Y, Li Z, Cui S, Liang GP, Zhang QP (2021) Microbial–derived carbon components are critical for enhancing soil organic carbon in no–tillage croplands: a global perspective. Soil Till Res 205:104758. https://doi.org/10.1016/j.still.2020.104758

    Article  Google Scholar 

  35. Steenwerth K, Belina KM (2008) Cover crops enhance soil organic matter, carbon dynamics and microbiological function in a vineyard agroecosystem. Appl Soil Ecol 40:359–369. https://doi.org/10.1016/j.apsoil.2008.06.006

    Article  Google Scholar 

  36. Carpio MJ, García-Delgado C, Marín-Benito JM, Sánchez-Martín MJ, Rodríguez-Cruz MS (2020) Soil microbial community changes in a field treatment with chlorotoluron, flufenacet and diflufenican and two organic amendments. Agronomy 10:1166. https://doi.org/10.3390/agronomy10081166

    Article  CAS  Google Scholar 

  37. Miller JJ, Beasley BW, Owen ML, Hao X, Drury CF, Chanasyk DS (2020) Influence of feedlot manure amendments on dissolved organic carbon in runoff during transition from continuous to legacy applications. Can J Soil Sci 100:440–452. https://doi.org/10.1139/cjss-2019-0159

    Article  CAS  Google Scholar 

  38. Liu F, Wang D, Zhang B, Huang J (2021) Concentration and biodegradability of dissolved organic carbon derived from soils: a global perspective. Sci Total Environ 754:142378. https://doi.org/10.1016/j.scitotenv.2020.142378

    Article  CAS  Google Scholar 

  39. Camino-Serrano M, Gielen B, Luyssaert S, Ciais P, Vicca S, Guenet B, De Vos B, Cools N, Ahrens B, Arain MA, Borken W, Clarke N, Clarkson B, Cummins T, Don A, Pannatler EG, Laudon H, Moore T, Nieminen TM, Nilsson MB, Peichl M, Schwendenmann L, Siemens J, Janssens I (2014) Linking variability in soil solution dissolved organic carbon to climate, soil type, and vegetation type. Glob Biogeochem Cycles 28:497–509. https://doi.org/10.1002/2013GB004726

    Article  CAS  Google Scholar 

  40. Scott EE, Rothstein DE (2014) The dynamic exchange of dissolved organic matter percolating through six diverse soils. Soil Biol Biochem 69:83–92. https://doi.org/10.1016/j.soilbio.2013.10.052

    Article  CAS  Google Scholar 

  41. Gmach MR, Cherubin MR, Kaiser K, Cerri CEP (2019) Processes that influence dissolved organic matter in the soil: a review. Sci Agric 77:e20180164. https://doi.org/10.1590/1678-992x-2018-0164

    Article  CAS  Google Scholar 

  42. Liu F, Kou D, Abbott BW, Mao C, Chen Y, Chen L, Yang Y (2019) Disentangling the effects of climate, vegetation, soil and related substrate properties on the biodegradability of permafrost derived dissolved organic carbon. J Geophys Res Biogeosci 124:3377–3389. https://doi.org/10.1029/2018JG004944

    Article  CAS  Google Scholar 

  43. Liu M, Tan Y, Fang K, Chen C, Tang Z, Liu X, Yu Z (2021) Diverse molecular compositions of dissolved organic matter derived from different composts using ESI FT–ICR MS. J Environ Sci 99:80–89. https://doi.org/10.1016/j.jes.2020.06.011

    Article  Google Scholar 

  44. Martin-Olmedo P, Rees RM (1999) Short-term N availability in response to dissolved–organic–carbon from poultry manure, alone or in combination with cellulose. Biol Fertil Soils 29:386–393. https://doi.org/10.1007/s003740050569

    Article  Google Scholar 

  45. Franchini JC, Gonzalez-Vila FJ, Cabrera F, Miyazawa M, Pavan MA (2001) Rapid transformations of plant water-soluble organic compounds in relation to cation mobilization in an acid Oxisol. Plant Soil 231:55–63. https://doi.org/10.1023/A:1010338917775

    Article  CAS  Google Scholar 

  46. Chantigny MH, Angers DA, Beauchamp CJ (2000) Decomposition of de-inking paper sludge in agricultural soils as characterized by carbohydrate analysis. Soil Biol Biochem 32:1561–1570. https://doi.org/10.1016/S0038-0717(00)00069-9

    Article  CAS  Google Scholar 

  47. Tiefenbacher A, Weigelhofer G, Klik A, Pucher M, Santner J, Wenzel W, Eder A, Strauss P (2020) Short–term effects of fertilization on dissolved organic matter in soil leachate. Water 12:1617. https://doi.org/10.3390/w12061617

    Article  Google Scholar 

  48. Yang YJ, Liu HX, Dai YC, Tian HX, Zhou W, Lv JL (2021) Soil organic carbon transformation and dynamics of microorganisms under different organic amendments. Sci Total Environ 750:141719. https://doi.org/10.1016/j.scitotenv.2020.141719

    Article  CAS  Google Scholar 

  49. McCarty GW, Bremner JM (1992) Availability of organic-carbon for denitrification of nitrate in subsoils. Biol Fertil Soils 14:219–222. https://doi.org/10.1007/BF00346064

    Article  CAS  Google Scholar 

  50. Kirchmann H, Lundvall A (1993) Relationship between N–immobilization and volatile fatty–acids in soil after application of pig and cattle slurry. Biol Fertil Soils 15:161–164. https://doi.org/10.1007/BF00361605

    Article  CAS  Google Scholar 

  51. Jensen LS, Mueller T, Magid J, Nielsen NE (1997) Temporal variation of C and N mineralization, microbial biomass and extractable organic pools in soil after oilseed rape straw incorporation in the field. Soil Biol Biochem 29:1043–1055. https://doi.org/10.1016/S0038-0717(97)00014-X

    Article  CAS  Google Scholar 

  52. Leinweber P, Schulten HR, Korschens M (1995) Hot–water extracted organic–matter–chemical–composition and temporal variations in a long–term field experiment. Biol Fertil Soils 20:17–23. https://doi.org/10.1007/BF00307836

    Article  CAS  Google Scholar 

  53. Zsolnay Á, Görlitz H (1994) Water-extractable organic-matter in arable soils - effects of drought and long–term fertilization. Soil Biol Biochem 26:1257–1261. https://doi.org/10.1016/0038-0717(94)90151-1

    Article  Google Scholar 

  54. Shand CA, Williams BL, Smith S, Young ME (2000) Temporal changes in C, P and N concentrations in soil solution following application of synthetic sheep urine to a soil under grass. Plant Soil 222:1–13. https://doi.org/10.1023/A:1004799323646

    Article  CAS  Google Scholar 

  55. Ohno T, Crannell BS (1996) Green and animal manure–derived dissolved organic matter effects on phosphorus sorption. J Environ Qual 25:1137–1143. https://doi.org/10.2134/jeq1996.00472425002500050029x

    Article  CAS  Google Scholar 

  56. Provenzano MR, Cilenti A, Gigliotti G, Erriquens F, Senesi N (2006) Spectroscopic and thermal investigation of hydrophobic and hydrophilic fractions of dissolved organic matter. Compost Sci Util 14:191–200. https://doi.org/10.1080/1065657X.2006.10702283

    Article  CAS  Google Scholar 

  57. Plaza C, Senesi N, Brunetti G, Mondelli D (2007) Evolution of the fulvic acid fractions during co-composting of olive oil mill wastewater sludge and tree cuttings. Bioresour Technol 98:1964–1971. https://doi.org/10.1016/j.biortech.2006.07.051

    Article  CAS  Google Scholar 

  58. Yang Y, Du W, Cui Z, Zhao T, Wang X, Lv J (2020) Spectroscopic characteristics of dissolved organic matter during pig manure composting with bean dregs and biochar amendments. Microchem J 158:105226. https://doi.org/10.1016/j.microc.2020.105226

    Article  CAS  Google Scholar 

  59. Ćwieląg-Piasecka I, Medyńska-Juraszek A, Jerzykiewicz M, Dębicka M, Bekier J, Jamroz E, Kawałko D (2018) Humic acid and biochar as specific sorbents of pesticides. J Soils Sediments 18:2692–2702. https://doi.org/10.1007/s11368-018-1976-5

    Article  CAS  Google Scholar 

  60. García-Gil JC, Plaza C, Senesi N, Brunetti G, Polo A (2004) Effects of sewage sludge amendment on humic acids and microbiological properties of a semiarid Mediterranean soil. Biol Fertil Soils 39:320–328. https://doi.org/10.1007/s00374-003-0709-z

    Article  CAS  Google Scholar 

  61. García-Gil JC, Plaza C, Fernández JM, Senesi N, Polo A (2008) Soil fulvic acid characteristics and proton binding behavior as affected by long-term municipal waste compost amendment under semi-arid environment. Geoderma 146:363–369. https://doi.org/10.1016/j.geoderma.2008.06.009

    Article  CAS  Google Scholar 

  62. Fernández JM, Polo A, Senesi N, Plaza C (2007) Acid–base properties of humic substances from composted and thermally-dried sewage sludges and amended soils as determined by potentiometric titration and the NICA–Donnan model. Chemosphere 69:630–635. https://doi.org/10.1016/j.chemosphere.2007.02.063

    Article  CAS  Google Scholar 

  63. Bertoncini EI, D’Orazio V, Senesi N, Mattiazzo ME (2005) Fluorescence analysis of humic and fulvic acids from two Brazilian oxisols as affected by biosolid amendment. Anal Bioanal Chem 381:1281–1288. https://doi.org/10.1007/s00216-005-3054-2

    Article  CAS  Google Scholar 

  64. Plaza C, García-Gil JC, Polo A, Senesi N, Brunetti G (2005) Proton binding by humic and fulvic acids from pig slurry and amended soils. J Environ Qual 34:1131–1137. https://doi.org/10.2134/jeq2004.0378

    Article  CAS  Google Scholar 

  65. Musadji NY, Lemee L, Caner L, Porel G, Poinot R, Geffroy-Rodier C (2020) Spectral characteristics of soil dissolved organic matter: long-term effects of exogenous organic matter on soil organic matter and spatial-temporal changes. Chemosphere 240:124808. https://doi.org/10.1016/j.chemosphere.2019.124808

    Article  CAS  Google Scholar 

  66. Wu HQ, Kida M, Domoto A, Hara M, Ashida H, Suzuki T, Fujitake N (2019) The effects of fertilization treatments and cropping systems on long-term dynamics and spectroscopic characteristics of dissolved organic matter in paddy soil. Soil Sci Plant Nutr 65:557–565. https://doi.org/10.1080/00380768.2019.1689794

    Article  CAS  Google Scholar 

  67. Garcia-Jaramillo M, Trippe KM, Helmus R, Knicker HE, Cox L, Hermosín MC, Parsons JR, Kalbitz K (2020) An examination of the role of biochar and biochar water–extractable substances on the sorption of ionizable herbicides in rice paddy soils. Sci Total Environ 706:135682. https://doi.org/10.1016/j.scitotenv.2019.135682

    Article  CAS  Google Scholar 

  68. Panwar NL, Pawar A, Salvi BL (2019) Comprehensive review on production and utilization of biochar. SN Appl Sci 1:168. https://doi.org/10.1007/s42452-019-0172-6

    Article  CAS  Google Scholar 

  69. Yang Y, Ye S, Zhang C, Zeng G, Tan X, Song B, Zhang P, Yang H, Li M, Chen Q (2021) Application of biochar for the remediation of polluted sediments. J Hazard Mater 404:124052. https://doi.org/10.1016/j.jhazmat.2020.124052

    Article  CAS  Google Scholar 

  70. García-Jaramillo M, Cox L, Knicker HE, Cornejo J, Spokas KA, Hermosín M (2015) Characterization and selection of biochar for an efficient retention of tricyclazole in a flooded alluvial paddy soil. J Hazard Mater 286:581–588. https://doi.org/10.1016/j.jhazmat.2014.10.052

    Article  CAS  Google Scholar 

  71. Smebye A, Alling V, Vogt RD, Gadmar TC, Mulder J, Cornelissen G, Hale SE (2016) Biochar amendment to soil changes dissolved organic matter content and composition. Chemosphere 142:100–105. https://doi.org/10.1016/j.chemosphere.2015.04.087

    Article  CAS  Google Scholar 

  72. Gondek K, Mierzwa-Hersztek M (2016) Effect of low-temperature biochar derived from pig manure and poultry litter on mobile and organic matter-bound forms of Cu, Cd, Pb and Zn in sandy soil. Soil Use Manag 32:357–367. https://doi.org/10.1111/sum.12285

    Article  Google Scholar 

  73. Deng YW, Yan CX, Nie MH, Ding MJ (2021) Bisphenol A adsorption behavior on soil and biochar: impact of dissolved organic matter. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-12723-1

  74. Huang M, Li ZW, Chen M, Wen JJ, Luo NL, Xu WH, Ding X, Xing WL (2020) Dissolved organic matter released from rice straw and straw biochar: contrasting molecular composition and lead binding behaviors. Sci Total Environ 739:140378. https://doi.org/10.1016/j.scitotenv.2020.140378

    Article  CAS  Google Scholar 

  75. Fine P, Carmeli S, Borisover M, Hayat R, Beriozkin A, Hass A, Mingelgrin U (2018) Properties of the DOM in soil irrigated with wastewater effluent and its interaction with copper ions. Water Air Soil Pollut 229:2. https://doi.org/10.1007/s11270-017-3627-7

    Article  CAS  Google Scholar 

  76. Lado M, Bar-Tal A, Azenkot A, Assouline S, Ravina I, Erner Y, Fine P, Dasberg S, Ben-Hur M (2012) Changes in chemical properties of semiarid soils under long-term secondary treated wastewater irrigation. Soil Sci Soc Am J 76:1358–1369. https://doi.org/10.2136/sssaj2011.0230

    Article  CAS  Google Scholar 

  77. Müller K, Duwig C, Prado B, Siebe C, Hidalgo C, Etchevers JJ (2012) Impact of long-term wastewater irrigation on sorption and transport of atrazine in Mexican agricultural soils. J Environ Sci Health B 47:30–41. https://doi.org/10.1080/03601234.2012.606416

    Article  CAS  Google Scholar 

  78. Angin I, Yaganoglu AV, Turan M (2005) Effects of long–term wastewater irrigation on soil properties. J Sustain Agric 26:31–42. https://doi.org/10.1300/J064v26n03_05

    Article  Google Scholar 

  79. Rusan MJM, Hinnawi S, Rousan L (2007) Long term effect of wastewater irrigation of forage crops on soil and plant quality parameters. Desalination 215:143–152. https://doi.org/10.1016/j.desal.2006.10.032

    Article  CAS  Google Scholar 

  80. Belaid N, Neel C, Kallel M, Ayoub T, Ayadi A, Baudu M (2012) Long term effects of treated wastewater irrigation on calcisol fertility: a case study of Sfax-Tunisia. Agric Sci 3:702–713. https://doi.org/10.4236/as.2012.35085

    Article  Google Scholar 

  81. Xu J, Wu L, Chang AC, Zhang Y (2010) Impact of long-term reclaimed wastewater irrigation on agricultural soils: a preliminary assessment. J Hazard Mater 183:780–786. https://doi.org/10.1016/j.jhazmat.2010.07.094

    Article  CAS  Google Scholar 

  82. Bongiorno G, Bunemann EK, Oguejiofor CU, Meier J, Gort G, Comans R, Mader P, Brussaard L, de Goede R (2019) Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe. Ecol Indic 99:38–50. https://doi.org/10.1016/j.ecolind.2018.12.008

    Article  CAS  Google Scholar 

  83. Gevao B, Semple KT, Jones KC (2000) Bound pesticide residues in soils: a review. Environ Pollut 108:3–14. https://doi.org/10.1016/S0269-7491(99)00197-9

    Article  CAS  Google Scholar 

  84. Tian BB, Zhou JH, Xie F, Guo QN, Zhang AP, Wang XQ, Yu QQ, Li N, Yang H (2019) Impact of surfactant and dissolved organic matter on uptake of atrazine in maize and its mobility in soil. J Soils Sediments 19:599–608. https://doi.org/10.1007/s11368-018-2095-z

    Article  CAS  Google Scholar 

  85. Wu DM, Yun YH, Jiang L, Wu CY (2018) Influence of dissolved organic matter on sorption and desorption of MCPA in ferralsol. Sci Total Environ 616:1449–1456. https://doi.org/10.1016/j.scitotenv.2017.10.169

    Article  CAS  Google Scholar 

  86. Wu DM, Ren CQ, Wu CY, Li Y, Deng X, Li QF (2021) Mechanisms by which different polar fractions of dissolved organic matter affect sorption of the herbicide MCPA in ferralsol. J Hazard Mater 416:125774. https://doi.org/10.1016/j.jhazmat.2021.125774

    Article  CAS  Google Scholar 

  87. Trinh HT, Duong HT, Ta TT, Cao HV, Strobel BW, Le GT (2017) Simultaneous effect of dissolved organic carbon, surfactant, and organic acid on the desorption of pesticides investigated by response surface methodology. Environ Sci Pollut Res 24:19338–19346. https://doi.org/10.1007/s11356-017-9431-5

    Article  CAS  Google Scholar 

  88. He Y, Yao T, Tan S, Yu B, Liu K, Hu L, Luo K, Liu M, Liu X, Bai L (2019) Effects of pH and gallic acid on the adsorption of two ionizable organic contaminants to rice straw-derived biochar-amended soils. Ecotoxicol Environ Saf 184:109656. https://doi.org/10.1016/j.ecoenv.2019.109656

    Article  CAS  Google Scholar 

  89. Wang YF, Zhang XY, Zhang X, Meng QJ, Gao FJ, Zhang Y (2017) Characterization of spectral responses of dissolved organic matter (DOM) for atrazine binding during the sorption process onto black soil. Chemosphere 180:531–539. https://doi.org/10.1016/j.chemosphere.2017.04.063

    Article  CAS  Google Scholar 

  90. Cao B, Jiang Z, Li JM, Zhang XY, Hu Y, Chen JN, Zhang Y (2018) Different dissolved organic matter (DOM) characteristics lead to diverse atrazine adsorption traits on the non–rhizosphere and rhizosphere soil of Pennisetum americanum (L.) K. Schum. Chemosphere 209:608–616. https://doi.org/10.1016/j.chemosphere.2018.06.069

    Article  CAS  Google Scholar 

  91. Albers CN, Ernstsen V, Johnsen AR (2019) Soil domain and liquid manure affect pesticide sorption in macroporous clay till. J Environ Qual 48:147–155. https://doi.org/10.2134/jeq2018.06.0222

    Article  CAS  Google Scholar 

  92. Gaonkar OD, Nambi IM, Govindarajan SK (2019) Soil organic amendments: impacts on sorption of organophosphate pesticides on an alluvial soil. J Soils Sediments 19:566–578. https://doi.org/10.1007/s11368-018-2080-6

    Article  CAS  Google Scholar 

  93. Calderón MJ, Real M, Cabrera A, Koskinen WC, Cornejo J, Hermosín MC (2015) Influence of olive oil mill waste amendment on fate of oxyfluorfen in southern Spain soils. Clean 43:1107–1113. https://doi.org/10.1002/clen.201400560

    Article  CAS  Google Scholar 

  94. Thevenot M, Dousset S (2015) Compost effect on diuron retention and transport in structured vineyard soils. Pedosphere 25:25–36. https://doi.org/10.1016/S1002-0160(14)60073-4

    Article  CAS  Google Scholar 

  95. Cabrera A, Cox L, Spokas K, Hermosín MC, Cornejo J, Koskinen WC (2014) Influence of biochar amendments on the sorption–desorption of aminocyclopyrachlor, bentazone and pyraclostrobin pesticides to an agricultural soil. Sci Total Environ 470–471:438–443. https://doi.org/10.1016/j.scitotenv.2013.09.080

    Article  CAS  Google Scholar 

  96. Keren Y, Borisover M, Bukhanovsky N (2015) Sorption interactions of organic compounds with soils affected by agricultural olive mill wastewater. Chemosphere 138:462–468. https://doi.org/10.1016/j.chemosphere.2015.06.085

    Article  CAS  Google Scholar 

  97. Keren Y, Borisover M, Schaumann GE, Diehl D, Tamimi N, Bukhanovsky N (2017) Land disposal of olive mill wastewater enhances ability of soil to sorb diuron: temporal persistence, and the effects of soil depth and application season. Agric Ecosyst Environ 236:43–51. https://doi.org/10.1016/j.agee.2016.11.013

    Article  CAS  Google Scholar 

  98. Rodríguez-Liébana JA, Peña A (2018) Adsorption–desorption of dimethenamid and fenarimol onto three agricultural soils as affected by treated wastewater and fresh sewage sludge–derived dissolved organic carbon. J Environ Manag 217:592–599. https://doi.org/10.1016/j.jenvman.2018.03.119

    Article  CAS  Google Scholar 

  99. Rodríguez-Liébana JA, Mingorance MD, Peña A (2018) Thiacloprid adsorption and leaching in soil: effect of the composition of irrigation solutions. Sci Total Environ 610:367–376. https://doi.org/10.1016/j.scitotenv.2017.08.028

    Article  CAS  Google Scholar 

  100. Avneri-Katz S, Young RB, McKenna AM, Chen H, Corilo YE, Polubesova T, Borch T, Chefetz B (2017) Adsorptive fractionation of dissolved organic matter (DOM) by mineral soil: macroscale approach and molecular insight. Org Geochem 103:113–124. https://doi.org/10.1016/j.orggeochem.2016.11.004

    Article  CAS  Google Scholar 

  101. Zhu LJ, Zhao Y, Chen YN, Cui HY, Wei YQ, Liu HL, Chen XM, Wei ZM (2018) Characterization of atrazine binding to dissolved organic matter of soil under different types of land use. Ecotoxicol Environ Saf 147:1065–1072. https://doi.org/10.1016/j.ecoenv.2016.11.008

    Article  CAS  Google Scholar 

  102. Wu L, Dai J, Bi E (2020) Roles of dissolved humic acid and tannic acid in sorption of benzotriazole to a sandy loam soil. Ecotoxicol Environ Saf 204:111088. https://doi.org/10.1016/j.ecoenv.2020.111088

    Article  CAS  Google Scholar 

  103. Scaglia B, Baglieri A, Tambone F, Gennari M, Adani F (2016) Chlorpyrifos-methyl solubilisation by humic acids used as biosurfactants extracted from lignocelluloses and kitchen wastes. Chemosphere 159:208–213. https://doi.org/10.1016/j.chemosphere.2016.06.008

    Article  CAS  Google Scholar 

  104. Chabauty F, Pot V, Bourdat-Deschamps M, Bernet N, Labat C, Benoit P (2016) Transport of organic contaminants in subsoil horizons and effects of dissolved organic matter related to organic waste recycling practices. Environ Sci Pollut Res 23:6907–6918. https://doi.org/10.1007/s11356-015-5938-9

    Article  CAS  Google Scholar 

  105. Peikert B, Schaumann GE, Keren Y, Bukhanovsky N, Borisover M, Garfha MA, Shoqeric JH, Dag A (2015) Characterization of topsoils subjected to poorly controlled olive oil mill wastewater pollution in West Bank and Israel. Agric Ecosyst Environ 199:176–189. https://doi.org/10.1016/j.agee.2014.08.025

    Article  CAS  Google Scholar 

  106. Flury M (1996) Experimental evidence of transport of pesticides through field soils-a review. J Environ Qual 25:25–45. https://doi.org/10.2134/jeq1996.00472425002500010005x

    Article  CAS  Google Scholar 

  107. Katagi T (2013) Soil column leaching of pesticides. Rev Environ Contam Toxicol 221:1–105. https://doi.org/10.1007/978-1-4614-4448-0_1

    Article  CAS  Google Scholar 

  108. Gonçalves MS, Sampaio SC, Suszek FL, Coelho SRM, Godoi I (2016) Atrazine leaching in soil submitted of swine wastewater application. Irriga 21:131–139. https://doi.org/10.15809/irriga.2016v21n1p131-139

    Article  Google Scholar 

  109. Salazar-Ledesma M, Prado B, Zamora O, Siebe C (2018) Mobility of atrazine in soils of a wastewater irrigated maize field. Agric Ecosyst Environ 255:73–83. https://doi.org/10.1016/j.agee.2017.12.018

    Article  CAS  Google Scholar 

  110. Carpio MJ, Rodriguez-Cruz MS, García-Delgado C, Sánchez-Martín MJ, Marín-Benito JM (2020) Mobility monitoring of two herbicides in amended soils: a field study for modeling applications. J Environ Manag 260:110161. https://doi.org/10.1016/j.jenvman.2020.110161

    Article  CAS  Google Scholar 

  111. Marín-Benito JM, Mamy L, Carpio MJ, Sánchez-Martín MJ, Rodríguez-Cruz MS (2020) Modelling herbicides mobility in amended soils: calibration and test of PRZM and MACRO. Sci Total Environ 717:137019. https://doi.org/10.1016/j.scitotenv.2020.137019

    Article  CAS  Google Scholar 

  112. Aharonov-Nadborny R, Raviv M, Graber ER (2016) Soil spreading of liquid olive mill processing wastes impacts leaching of adsorbed terbuthylazine. Chemosphere 156:220–227. https://doi.org/10.1016/j.chemosphere.2016.04.104

    Article  CAS  Google Scholar 

  113. Fernández-Bayo JD, Nogales R, Romero E (2015) Winery vermicomposts to control the leaching of diuron, imidacloprid and their metabolites: role of dissolved organic carbon content. J Environ Sci Health B 50:190–200. https://doi.org/10.1080/03601234.2015.982423

    Article  CAS  Google Scholar 

  114. Peña D, López-Piñeiro A, Albarrán A, Becerra D, Sánchez-Llerena J (2015) Environmental fate of the herbicide MCPA in agricultural soils amended with fresh and aged de–oiled two–phase olive mill waste. Environ Sci Pollut Res 22:13915–13925. https://doi.org/10.1007/s11356-015-4622-4

    Article  CAS  Google Scholar 

  115. Trinh HT, Duong HT, Le GT, Marcussen H, Strobel BW (2018) Pesticide and element release from a paddy soil in central Vietnam: role of DOC and oxidation state during flooding. Geoderma 310:209–217. https://doi.org/10.1016/j.geoderma.2017.09.025

    Article  CAS  Google Scholar 

  116. Mojid MA, Hossain ABMZ, Wyseure GCL (2019) Impacts of municipal wastewater on the transport characteristics of reactive solutes through agricultural soils. Commun Soil Sci Plant Anal 50:1199–1213. https://doi.org/10.1080/00103624.2019.1604739

    Article  CAS  Google Scholar 

  117. González M, Mitton FM, Miglioranza KSB, Peña A (2019) Role of a non–ionic surfactant and carboxylic acids on the leaching of aged DDT residues in undisturbed soil columns. J Soils Sediments 19:1745–1755. https://doi.org/10.1007/s11368-018-2172-3

    Article  CAS  Google Scholar 

  118. Liling X, Zhenhua Z, Zhu Y, Fawundu E, Hussain J (2015) Simulation analysis of release kinetic of organochlorine pesticides from hydragric acrisols influenced by low-molecular weight organic acids leaching. Desalin Water Treat 53:3691–3703. https://doi.org/10.1080/19443994.2014.883159

    Article  CAS  Google Scholar 

  119. Vitale CM, Di Guardo A (2019) A review of the predictive models estimating association of neutral and ionizable organic chemicals with dissolved organic carbon. Sci Total Environ 666:1022–1032. https://doi.org/10.1016/j.scitotenv.2019.02.340

    Article  CAS  Google Scholar 

  120. Terzaghi E, Vitale CM, Di Guardo A (2020) Modelling peak exposure of pesticides in terrestrial and aquatic ecosystems: importance of dissolved organic carbon and vertical particle movement in soil. SAR QSAR Environ Res 31:19–32. https://doi.org/10.1080/1062936X.2019.1686715

    Article  CAS  Google Scholar 

  121. Ma X, Liu XP, Ding SL, Su SJ, Gan ZW (2019) Sorption and leaching behavior of bithionol and levamisole in soils. Chemosphere 224:519–526. https://doi.org/10.1016/j.chemosphere.2019.02.170

    Article  CAS  Google Scholar 

  122. Franklin HM, Carroll AR, Chen CR, Maxwell P, Burford MA (2020) Plant source and soil interact to determine characteristics of dissolved organic matter leached into waterways from riparian leaf litter. Sci Total Environ 703:134530. https://doi.org/10.1016/j.scitotenv.2019.134530

    Article  CAS  Google Scholar 

  123. Jia H, Lu HL, Liu JC, Li J, Dai MY, Yan CL (2016) Effects of root exudates on the leachability, distribution, and bioavailability of phenanthrene and pyrene from mangrove sediments. Environ Sci Pollut Res 23:5566–5576. https://doi.org/10.1007/s11356-015-5772-0

    Article  CAS  Google Scholar 

  124. Abdelrady A, Sharma S, Sefelnasr A, Abogdal A, Kennedy M (2019) Investigating the impact of temperature and organic matter on the removal of selected organic micropollutants during bank filtration: a batch study. J Environ Chem Eng 7:102904. https://doi.org/10.1016/j.jece.2019.102904

    Article  CAS  Google Scholar 

  125. Luo YJ, Atashgahi SAA, Rijnaarts HHM, Comans RN, Sutton NB (2020) Influence of different redox conditions and dissolved organic matter on pesticide biodegradation in simulated groundwater systems. Sci Total Environ 677:692–699. https://doi.org/10.1016/j.scitotenv.2019.04.128

    Article  CAS  Google Scholar 

  126. Jing X, Yao GJ, Liu DH, Liang YR, Luo M, Zhou ZQ, Wang P (2017) Effects of wastewater irrigation and sewage sludge application on soil residues of chiral fungicide benalaxyl. Environ Pollut 224:1–6. https://doi.org/10.1016/j.envpol.2017.03.004

    Article  CAS  Google Scholar 

  127. Mukherjee S, Tappe W, Weihermueller L, Hofmann D, Koppchen S, Laabs V, Schroeder T, Vereecken H, Burauel P (2016) Dissipation of bentazone, pyrimethanil and boscalid in biochar and digestate based soil mixtures for biopurification systems. Sci Total Environ 544:192–202. https://doi.org/10.1016/j.scitotenv.2015.11.111

    Article  CAS  Google Scholar 

  128. Rodríguez-Liébana JA, ElGouzi S, Peña A (2017) Laboratory persistence in soil of thiacloprid, pendimethalin and fenarimol incubated with treated wastewater and dissolved organic matter solutions. Contribution of soil biota. Chemosphere 181:508–517. https://doi.org/10.1016/j.chemosphere.2017.04.111

    Article  CAS  Google Scholar 

  129. ElGouzi S, Draoui K, Chtoun EH, Mingorance MD, Peña A (2015) Changes in the persistence of two phenylurea herbicides in two Mediterranean soils under irrigation with low- and high-quality water: a laboratory approach. Sci Total Environ 538:16–22. https://doi.org/10.1016/j.scitotenv.2015.07.146

    Article  CAS  Google Scholar 

  130. Nowak KM, Miltner A, Poll C, Kandeler E, Streck T, Pagel H (2020) Plant litter enhances degradation of the herbicide MCPA and increases formation of biogenic non-extractable residues in soil. Environ Int 142:105867. https://doi.org/10.1016/j.envint.2020.105867

    Article  CAS  Google Scholar 

  131. Bertelkamp C, van der Hoek JP, Schoutteten K, Hulpiau L, Vanhaecke L, Bussche JV, Cabo AJ, Callewaert C, Boon N, Löwenberg J, Singhalh N, Verliefde ARD (2016) The effect of feed water dissolved organic carbon concentration and composition on organic micropollutant removal and microbial diversity in soil columns simulating river bank filtration. Chemosphere 144:932–939. https://doi.org/10.1016/j.chemosphere.2015.09.017

    Article  CAS  Google Scholar 

  132. Deng X, Wu CY, Li Y, Liu JK, Li QF (2016) Effects of chicken manure compost on the production of dissolved organic carbon and the degradation of p, p’-DDT in loam soil. In: Kim YH (ed) Proceedings of the 2016 5th international conference on civil, architectural and hydraulic engineering (ICCAHE 2016). Atlantis Press, pp 124–127. https://doi.org/10.2991/iccahe-16.2016.22

    Chapter  Google Scholar 

  133. García-Jaramillo M, Cox L, Hermosín MC, Cerli C, Kalbitz K (2016) Influence of green waste compost on azimsulfuron dissipation and soil functions under oxic and anoxic conditions. Sci Total Environ 550:760–767. https://doi.org/10.1016/j.scitotenv.2016.01.142

    Article  CAS  Google Scholar 

  134. Huang H, Zhang CL, Rong Q, Li CZ, Mao J, Liu Y, Chen JX, Liu XT (2020) Effect of two organic amendments on atrazine degradation and microorganisms in soil. Appl Soil Ecol 152:103564. https://doi.org/10.1016/j.apsoil.2020.103564

    Article  Google Scholar 

  135. Ren ZG, Zhang HY, Wang YW, Lu L, Ren D, Wang JJ (2021) Multiple roles of dissolved organic matter released from decomposing rice straw at different times in organic pollutant photodegradation. J Hazard Mater 401:123434. https://doi.org/10.1016/j.jhazmat.2020.123434

    Article  CAS  Google Scholar 

  136. Thorngren JL, Harwood AD, Murphy TM, Hartz KEH, Fung CY, Lydy MJ (2017) Fate and risk of atrazine and sulfentrazone to nontarget species at an agriculture site. Environ Toxicol Chem 36:1301–1310. https://doi.org/10.1002/etc.3664

    Article  CAS  Google Scholar 

  137. Li YL, He W, Liu WX, Kong XZ, Yang B, Yang C, Xu FL (2015) Influences of binding to dissolved organic matter on hydrophobic organic compounds in a multi-contaminant system: coefficients, mechanisms and ecological risks. Environ Pollut 206:461–468. https://doi.org/10.1016/j.envpol.2015.07.047

    Article  CAS  Google Scholar 

  138. Kovacevic V, Simpson AJ, Simpson MJ (2019) Metabolic profiling of Daphnia magna exposure to a mixture of hydrophobic organic contaminants in the presence of dissolved organic matter. Sci Total Environ 688:1252–1262. https://doi.org/10.1016/j.scitotenv.2019.06.222

    Article  CAS  Google Scholar 

  139. Coquillé N, Ménard D, Rouxel J, Dupraz V, Éon M, Pardon P, Budzinski H, Morin S, Parlanti E, Stachowski-Haberkorn S (2018) The influence of natural dissolved organic matter on herbicide toxicity to marine microalgae is species–dependent. Aquat Toxicol 198:103–117. https://doi.org/10.1016/j.aquatox.2018.02.019

    Article  CAS  Google Scholar 

  140. Mihajlovic V, Tomic T, Tubic A, Jazic JM, Tumbas II, Sunjka D, Lazic S, Teodorovic I (2019) The impact of humic acid on toxicity of individual herbicides and their mixtures to aquatic macrophytes. Environ Sci Pollut Res 26:23571–23582. https://doi.org/10.1007/s11356-019-05629-6

    Article  CAS  Google Scholar 

  141. Mingorance MD, Peña A, Guzmán I, Rossini-Oliva S (2017) Influence of compost of sewage sludge and low-quality water on pesticide uptake by tomato plants grown in an iron mine soil. J Soils Sediments 17:1301–1307. https://doi.org/10.1007/s11368-015-1232-1

    Article  CAS  Google Scholar 

  142. Peña A, Mingorance MD, Guzmán I, Sánchez L, Fernández-Espinosa AJ, Valdés B, Rossini-Oliva S (2014) Protecting effect of recycled urban wastes (sewage sludge and wastewater) on ryegrass against the toxicity of pesticides at high concentrations. J Environ Manag 142:23–29. https://doi.org/10.1016/j.jenvman.2014.04.002

    Article  CAS  Google Scholar 

  143. Lu YC, Zhang S, Miao SS, Jiang C, Huang MT, Liu Y, Yang H (2015) Enhanced degradation of herbicide isoproturon in wheat rhizosphere by salicylic acid. J Agric Food Chem 63:92–103. https://doi.org/10.1021/jf505117j

    Article  CAS  Google Scholar 

  144. Wang C, Zhang Q (2017) Exogenous salicylic acid alleviates the toxicity of chlorpyrifos in wheat plants (Triticum aestivum). Ecotoxicol Environ Saf 137:218–224. https://doi.org/10.1016/j.ecoenv.2016.12.011

    Article  CAS  Google Scholar 

  145. Liu T, Yuan C, Gao Y, Luo J, Yang S, Liu S, Zhang R, Zou N (2020) Exogenous salicylic acid mitigates the accumulation of some pesticides in cucumber seedlings under different cultivation methods. Ecotoxicol Environ Saf 198:110680. https://doi.org/10.1016/j.ecoenv.2020.110680

    Article  CAS  Google Scholar 

  146. Manasfi R, Brienza M, Ait-Mouheb N, Montemurro N, Perez S, Chiron S (2021) Impact of long-term irrigation with municipal reclaimed wastewater on the uptake and degradation of organic contaminants in lettuce and leek. Sci Total Environ 765:142742. https://doi.org/10.1016/j.scitotenv.2020.142742

    Article  CAS  Google Scholar 

  147. Jia WL, Ma CX, Yin MF, Sun HW, Zhao Q, White JC, Wang CP, Xing BS (2020) Accumulation of phenanthrene and its metabolites in lettuce (Lactuca sativa L.) as affected by magnetic carbon nanotubes and dissolved humic acids. Environ Sci–Nano 7:12. https://doi.org/10.1039/d0en00932f

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aránzazu Peña .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Peña, A., Rodríguez-Liébana, J.A., Delgado-Moreno, L. (2021). An Overview of Recent Research on the Role of Dissolved Organic Matter on the Environmental Fate of Pesticides in Soils. In: Rodríguez-Cruz, M.S., Sánchez-Martín, M.J. (eds) Pesticides in Soils. The Handbook of Environmental Chemistry, vol 113. Springer, Cham. https://doi.org/10.1007/698_2021_801

Download citation

Publish with us

Policies and ethics