Skip to main content

GABAergic Control of CA3-driven Network Events in the Developing Hippocampus

  • Chapter
  • First Online:
Inhibitory Regulation of Excitatory Neurotransmission

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 44))

Abstract

Endogenous activity is a characteristic feature of developing neuronal networks. In the neonatal rat hippocampus, spontaneously occurring network events known as “Giant Depolarizing Potentials” (GDPs) are seen in vitro at a stage when GABAergic transmission is depolarizing. GDPs are triggered by the CA3 region and they are seen as brief recurrent events in field-potential recordings, paralleled by depolarization and spiking of pyramidal neurons. In the light of current data, GDPs are triggered by the glutamatergic pyramidal neurons which act as conditional pacemakers, while the depolarizing action of GABA plays a permissive role for the generation of these events in in vitro preparations. From an in vivo perspective, GDPs appear to be an immature form of hippocampal sharp waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguado F, Carmona MA, Pozas E, Aguilo A, Martinez-Guijarro FJ, Alcantara S, Borrell V, Yuste R, Ibanez CF, Soriano E (2003) BDNF regulates spontaneous correlated activity at early developmental stages by increasing synaptogenesis and expression of the K+/Cl- co-transporter KCC2. Development 130:1267–1280

    Article  PubMed  CAS  Google Scholar 

  2. Bains JS, Longacher JM, Staley KJ (1999) Reciprocal interactions between CA3 network activity and strength of recurrent collateral synapses. Nat Neurosci 2:720–726

    Article  PubMed  CAS  Google Scholar 

  3. Balakrishnan V, Becker M, Lohrke S, Nothwang HG, Guresir E, Friauf E (2003) Expression and function of chloride transporters during development of inhibitory neurotransmission in the auditory brainstem. J Neurosci 23:4134–4145

    PubMed  CAS  Google Scholar 

  4. Behrens CJ, van den Boom LP, de Hoz L, Friedman A, Heinemann U (2005) Induction of sharp wave-ripple complexes in vitro and reorganization of hippocampal networks. Nat Neurosci 8:1560–1567

    Article  PubMed  CAS  Google Scholar 

  5. Ben-Ari Y (2001) Developing networks play a similar melody. Trends Neurosci 24:353–360

    Article  PubMed  CAS  Google Scholar 

  6. Ben-Ari Y, Cherubini E, Corradetti R, Gaiarsa JL (1989) Giant synaptic potentials in immature rat CA3 hippocampal neurones. J Physiol Lond 416:303–325

    PubMed  CAS  Google Scholar 

  7. Blaesse P, Guillemin I, Schindler J, Schweizer M, Delpire E, Khiroug L, Friauf E, Nothwang HG (2006) Oligomerization of KCC2 correlates with development of inhibitory neurotransmission. J Neurosci 26:10407–10419

    Article  PubMed  CAS  Google Scholar 

  8. Bolea S, Avignone E, Berretta N, Sanchez-Andres JV, Cherubini E (1999) Glutamate controls the induction of GABA-mediated giant depolarizing potentials through AMPA receptors in neonatal rat hippocampal slices. J Neurophysiol 81:2095–2102

    PubMed  CAS  Google Scholar 

  9. Borodinsky LN, Root CM, Cronin JA, Sann SB, Gu X, Spitzer NC (2004) Activity-dependent homeostatic specification of transmitter expression in embryonic neurons. Nature 429:523–530

    Article  PubMed  CAS  Google Scholar 

  10. Buhl DL, Buzsaki G (2005) Developmental emergence of hippocampal fast-field “ripple” oscillations in the behaving rat pups. Neuroscience 134:1423–1430

    Article  PubMed  CAS  Google Scholar 

  11. Buzsaki G (1986) Hippocampal sharp waves: their origin and significance. Brain Res 398:242–252

    Article  PubMed  CAS  Google Scholar 

  12. Buzsaki G (1989) Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience 31:551–570

    Article  PubMed  CAS  Google Scholar 

  13. Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929

    Article  PubMed  CAS  Google Scholar 

  14. Buzsaki G, Horvath Z, Urioste R, Hetke J, Wise K (1992) High-frequency network oscillation in the hippocampus. Science 256:1025–1027

    Article  PubMed  CAS  Google Scholar 

  15. Buzsaki G, Leung LW, Vanderwolf CH (1983) Cellular bases of hippocampal EEG in the behaving rat. Brain Res 287:139–171

    PubMed  CAS  Google Scholar 

  16. Danglot L, Triller S, Marty S (2006) The development of hippocampal interneurons in rodents. Hippocampus 16:1032–1060

    Article  PubMed  CAS  Google Scholar 

  17. Dasen JS, Tice BC, Brenner-Morton S, Jessell TM (2005) A hox regulatory network establishes motor neuron pool identity and target-muscle connectivity. Cell 123:477–491

    Article  PubMed  CAS  Google Scholar 

  18. Deisz RA, Lux HD (1982) The role of intracellular chloride in hyperpolarizing post-synaptic inhibition of crayfish stretch receptor neurones. J Physiol Lond 326:123–138

    PubMed  CAS  Google Scholar 

  19. Duebel J, Haverkamp S, Schleich W, Feng G, Augustine GJ, Kuner T, Euler T (2006) Two-photon imaging reveals somatodendritic chloride gradient in retinal on-type bipolar cells expressing the biosensor clomeleon. Neuron 49:81–94

    Article  PubMed  CAS  Google Scholar 

  20. Fischer KF, Lukasiewicz PD, Wong RO (1998) Age-dependent and cell class-specific modulation of retinal ganglion cell bursting activity by GABA. J Neurosci 18:3767–3778

    PubMed  CAS  Google Scholar 

  21. Fukuda A, Muramatsu K, Okabe A, Shimano Y, Hida H, Fujimoto I, Nishino H (1998) Changes in intracellular Ca2+ induced by GABAA receptor activation and reduction in Cl gradient in neonatal rat neocortex. J Neurophysiol 79:439–446

    PubMed  CAS  Google Scholar 

  22. Gaiarsa JL, Corradetti R, Cherubini E, Ben-Ari Y (1991) Modulation of GABA-mediated synaptic potentials by glutamatergic agonists in neonatal CA3 rat hippocampal neurons. Eur J Neurosci 3:301–309

    Article  PubMed  Google Scholar 

  23. Ganguly K, Schinder AF, Wong ST, Poo M (2001) GABA itself promotes the developmental switch of neuronal GABAergic responses from excitation to inhibition. Cell 105:521–532

    Article  PubMed  CAS  Google Scholar 

  24. Gao XB, van den Pol AN (2001) GABA, not glutamate, a primary transmitter driving action potentials in developing hypothalamic neurons. J Neurophysiol 85:425–434

    PubMed  CAS  Google Scholar 

  25. Garaschuk O, Hanse E, Konnerth A (1998) Developmental profile and synaptic origin of early network oscillations in the CA1 region of rat neonatal hippocampus. J Physiol Lond 507:219–236

    Article  PubMed  CAS  Google Scholar 

  26. Garaschuk O, Linn J, Eilers J, Konnerth A (2000) Large-scale oscillatory calcium waves in the immature cortex. Nat Neurosci 3:452–459

    Article  PubMed  CAS  Google Scholar 

  27. Ge S, Goh EL, Sailor KA, Kitabatake Y, Ming GL, Song H (2006) GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 439:589–593

    Article  PubMed  CAS  Google Scholar 

  28. Gulyas AI, Sik A, Payne JA, Kaila K, Freund TF (2001) The KCl cotransporter, KCC2, is highly expressed in the vicinity of excitatory synapses in the rat hippocampus. Eur J Neurosci 13:2205–2217

    Article  PubMed  CAS  Google Scholar 

  29. Gummer AW, Mark RF (1994) Patterned neural activity in brain stem auditory areas of a prehearing mammal, the tammar wallaby (Macropus eugenii. Neuroreport 5:685–688

    Article  PubMed  CAS  Google Scholar 

  30. Hablitz JJ, Johnston D (1981) Endogenous nature of spontaneous bursting in hippocampal pyramidal neurons. Cell Mol Neurobiol 1:325–334

    Article  PubMed  CAS  Google Scholar 

  31. Hamburger V (1963) Some aspects of the embryology of behavior. Q Rev Biol 38:342–365

    Article  PubMed  CAS  Google Scholar 

  32. Haydar TF, Wang F, Schwartz ML, Rakic P (2000) Differential modulation of proliferation in the neocortical ventricular and subventricular zones. J Neurosci 20:5764–5774

    PubMed  CAS  Google Scholar 

  33. Hennou S, Khalilov I, Diabira D, Ben-Ari Y, Gozlan H (2002) Early sequential formation of functional GABA(A) and glutamatergic synapses on CA1 interneurons of the rat foetal hippocampus. Eur J Neurosci 16:197–208

    Article  PubMed  Google Scholar 

  34. Hinde RA (1970) Animal Behaviour. A Synthesis of Ethology and Comparative Psychology. McGraw-Hill, New York

    Google Scholar 

  35. Ho SM, Waite PM (1999) Spontaneous activity in the perinatal trigeminal nucleus of the rat. Neuroreport 10:659–664

    Article  PubMed  CAS  Google Scholar 

  36. Hollrigel GS, Ross ST, Soltesz I (1998) Temporal patterns and depolarizing actions of spontaneous GABAA receptor activation in granule cells of the early postnatal dentate gyrus. J Neurophysiol 80:2340–2351

    PubMed  CAS  Google Scholar 

  37. Hubner CA, Stein V, Hermans-Borgmeyer I, Meyer T, Ballanyi K, Jentsch TJ (2001) Disruption of KCC2 reveals an essential role of K-Cl cotransport already in early synaptic inhibition. Neuron 30:515–524

    Article  PubMed  CAS  Google Scholar 

  38. Isenring P, Jacoby SC, Payne JA, Forbush B III (1998) Comparison of Na-K-Cl cotransporters. NKCC1, NKCC2, and the HEK cell Na-L-Cl cotransporter. J Biol Chem 273:11295–11301

    Article  PubMed  CAS  Google Scholar 

  39. Jouvet M, Michel F, Courjon JL (1959) Electric activity of the rhinencephalon during sleep in cats. CR Seances Soc Biol Fil 153:101–105

    CAS  Google Scholar 

  40. Kaila K (1994) Ionic basis of GABAA receptor channel function in the nervous system. Prog Neurobiol 42:489–537

    Article  PubMed  CAS  Google Scholar 

  41. Kaila K, Voipio J (1987) Postsynaptic fall in intracellular pH induced by GABA-activated bicarbonate conductance. Nature 330:163–165

    Article  PubMed  CAS  Google Scholar 

  42. Kaila K, Voipio J, Paalasmaa P, Pasternack M, Deisz RA (1993) The role of bicarbonate in GABAA receptor-mediated IPSPs of rat neocortical neurones. J Physiol (Lond) 464:273–289

    CAS  Google Scholar 

  43. Kandel ER, Spencer WA (1961) Electrophysiology of hippocampal neurons, II. After-potentials and repetitive firing. J Neurophysiol 24:243–259

    PubMed  CAS  Google Scholar 

  44. Kandler K (2004) Activity-dependent organization of inhibitory circuits: lessons from the auditory system. Curr Opin Neurobiol 14:96–104

    Article  PubMed  CAS  Google Scholar 

  45. Kandler K, Gillespie DC (2005) Developmental refinement of inhibitory sound-localization circuits. Trends Neurosci 28:290–296

    Article  PubMed  CAS  Google Scholar 

  46. Karlsson KA, Blumberg MS (2003) Hippocampal theta in the newborn rat is revealed under conditions that promote REM sleep. J Neurosci 23:1114–1118

    PubMed  CAS  Google Scholar 

  47. Khazipov R, Esclapez M, Caillard O, Bernard C, Khalilov I, Tyzio R, Hirsch J, Dzhala V, Berger B, Ben-Ari Y (2001) Early development of neuronal activity in the primate hippocampus in utero. J Neurosci 21:9770–9781

    PubMed  CAS  Google Scholar 

  48. Khazipov R, Khalilov I, Tyzio R, Morozova E, Ben-Ari Y, Holmes GL (2004) Developmental changes in GABAergic actions and seizure susceptibility in the rat hippocampus. Eur J Neurosci 19:590–600

    Article  PubMed  Google Scholar 

  49. Khazipov R, Leinekugel X, Khalilov I, Gaiarsa JL, Ben-Ari Y (1997) Synchronization of GABAergic interneuronal network in CA3 subfield of neonatal rat hippocampal slices. J Physiol Lond 498:763–772

    PubMed  CAS  Google Scholar 

  50. Khirug S, Huttu K, Ludwig A, Smirnov S, Voipio J, Rivera C, Kaila K, Khiroug L (2005) Distinct properties of functional KCC2 expression in immature mouse hippocampal neurons in culture and in acute slices. Eur J Neurosci 21:899–904

    Article  PubMed  Google Scholar 

  51. Kubota D, Colgin LL, Casale M, Brucher FA, Lynch G (2003) Endogenous waves in hippocampal slices. J Neurophysiol 89:81–89

    Article  PubMed  Google Scholar 

  52. Lamsa K, Palva JM, Ruusuvuori E, Kaila K, Taira T (2000) Synaptic GABA(A) activation inhibits AMPA-kainate receptor-mediated bursting in the newborn (P0-P2) rat hippocampus. J Neurophysiol 83:359–366

    PubMed  CAS  Google Scholar 

  53. Lauri SE, Segerstrale M, Vesikansa A, Maingret F, Mulle C, Collingridge GL, Isaac JT, Taira T (2005) Endogenous activation of kainate receptors regulates glutamate release and network activity in the developing hippocampus. J Neurosci 25:4473–4484

    Article  PubMed  CAS  Google Scholar 

  54. Leblanc MO, Bland BH (1979) Developmental aspects of hippocampal electrical activity and motor behavior in the rat. Exp Neurol 66:220–237

    Article  PubMed  CAS  Google Scholar 

  55. Lebovitz RM, Dichter M, Spencer WA (1971) Recurrent excitation in the CA3 region of cat hippocampus. Int J Neurosci 2:99–107

    Article  PubMed  CAS  Google Scholar 

  56. Leinekugel X, Khalilov I, Ben-Ari Y, Khazipov R (1998) Giant depolarizing potentials: the septal pole of the hippocampus paces the activity of the developing intact septohippocampal complex in vitro. J Neurosci 18:6349–6357

    PubMed  CAS  Google Scholar 

  57. Leinekugel X, Khazipov R, Cannon R, Hirase H, Ben-Ari Y, Buzsaki G (2002) Correlated bursts of activity in the neonatal hippocampus in vivo. Science 296:2049–2052

    Article  PubMed  CAS  Google Scholar 

  58. Leinekugel X, Medina I, Khalilov I, Ben-Ari Y, Khazipov R (1997) Ca2+ oscillations mediated by the synergistic excitatory actions of GABA(A) and NMDA receptors in the neonatal hippocampus. Neuron 18:243–255

    Article  PubMed  CAS  Google Scholar 

  59. Leinekugel X, Tseeb V, Ben-Ari Y, Bregestovski P (1995) Synaptic GABAA activation induces Ca2+ rise in pyramidal cells and interneurons from rat neonatal hippocampal slices. J Physiol Lond 487:319–329

    PubMed  CAS  Google Scholar 

  60. Li H, Tornberg J, Kaila K, Airaksinen MS, Rivera C (2002) Patterns of cation-chloride cotransporter expression during embryonic rodent CNS development. Eur J Neurosci 16:2358–2370

    Article  PubMed  Google Scholar 

  61. LoTurco JJ, Owens DF, Heath MJ, Davis MB, Kriegstein AR (1995) GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15:1287–1298

    Article  PubMed  CAS  Google Scholar 

  62. Ludwig A, Li H, Saarma M, Kaila K, Rivera C (2003) Developmental up-regulation of KCC2 in the absence of GABAergic and glutamatergic transmission. Eur J Neurosci 18:3199–3206

    Article  PubMed  Google Scholar 

  63. Luhmann HJ, Prince DA (1991) Postnatal maturation of the GABAergic system in rat neocortex. J Neurophysiol 65:247–263

    PubMed  CAS  Google Scholar 

  64. MacVicar BA, Dudek FE (1980) Local synaptic circuits in rat hippocampus: interactions between pyramidal cells. Brain Res 184:220–223

    Article  PubMed  CAS  Google Scholar 

  65. Maffei L, Galli-Resta L (1990) Correlation in the discharges of neighboring rat retinal ganglion cells during prenatal life. Proc Natl Acad Sci USA 87:2861–2864

    Article  PubMed  CAS  Google Scholar 

  66. Maier N, Nimmrich V, Draguhn A (2003) Cellular and network mechanisms underlying spontaneous sharp wave-ripple complexes in mouse hippocampal slices. J Physiol (Lond) 550:873–887

    Article  CAS  Google Scholar 

  67. Martina M, Royer S, Pare D (2001) Cell-type-specific GABA responses and chloride homeostasis in the cortex and amygdala. J Neurophysiol 86:2887–2895

    PubMed  CAS  Google Scholar 

  68. Marty S, Berninger B, Carroll P, Thoenen H (1996) GABAergic stimulation regulates the phenotype of hippocampal interneurons through the regulation of brain-derived neurotrophic factor. Neuron 16:565–570

    Article  PubMed  CAS  Google Scholar 

  69. Marty S, Wehrle R, Alvarez-Leefmans FJ, Gasnier B, Sotelo C (2002) Postnatal maturation of Na+, K+, 2Cl cotransporter expression and inhibitory synaptogenesis in the rat hippocampus: an immunocytochemical analysis. Eur J Neurosci 15:233–245

    Article  PubMed  Google Scholar 

  70. Marty S, Wehrle R, Sotelo C (2000) Neuronal activity and brain-derived neurotrophic factor regulate the density of inhibitory synapses in organotypic slice cultures of postnatal hippocampus. J Neurosci 20:8087–8095

    PubMed  CAS  Google Scholar 

  71. McLean HA, Caillard O, Khazipov R, Ben-Ari Y, Gaiarsa JL (1996) Spontaneous release of GABA activates GABAB receptors and controls network activity in the neonatal rat hippocampus. J Neurophysiol 76:1036–1046

    PubMed  CAS  Google Scholar 

  72. Meister M, Wong RO, Baylor DA, Shatz CJ (1991) Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science 252:939–943

    Article  PubMed  CAS  Google Scholar 

  73. Menendez de la Prida L, Bolea S, Sanchez-Andres JV (1996) Analytical characterization of spontaneous activity evolution during hippocampal development in the rabbit. Neurosci Lett 218:185–187

    Article  PubMed  CAS  Google Scholar 

  74. Menendez de la Prida L, Bolea S, Sanchez-Andres JV (1998) Origin of the synchronized network activity in the rabbit developing hippocampus. Eur J Neurosci 10:899–906

    Article  PubMed  CAS  Google Scholar 

  75. Menendez de la Prida L, Sanchez-Andres JV (2000) Heterogeneous populations of cells mediate spontaneous synchronous bursting in the developing hippocampus through a frequency-dependent mechanism. Neuroscience 97:227–241

    Article  PubMed  CAS  Google Scholar 

  76. Miles R, Wong RK (1983) Single neurones can initiate synchronized population discharge in the hippocampus. Nature 306:371–373

    Article  PubMed  CAS  Google Scholar 

  77. Miles R, Wong RK (1987) Inhibitory control of local excitatory circuits in the guinea-pig hippocampus. J Physiol Lond 388:611–629

    PubMed  CAS  Google Scholar 

  78. Miles R, Wong RK (1987) Latent synaptic pathways revealed after tetanic stimulation in the hippocampus. Nature 329:724–726

    Article  PubMed  CAS  Google Scholar 

  79. Milner LD, Landmesser LT (1999) Cholinergic and GABAergic inputs drive patterned spontaneous motoneuron activity before target contact. J Neurosci 19:3007–3022

    PubMed  CAS  Google Scholar 

  80. Misgeld U, Deisz RA, Dodt HU, Lux HD (1986) The role of chloride transport in postsynaptic inhibition of hippocampal neurons. Science 232:1413–1415

    Article  PubMed  CAS  Google Scholar 

  81. Mueller AL, Taube JS, Schwartzkroin PA (1984) Development of hyperpolarizing inhibitory postsynaptic potentials and hyperpolarizing response to gamma-aminobutyric acid in rabbit hippocampus studied in vitro. J Neurosci 4:860–867

    PubMed  CAS  Google Scholar 

  82. Nishimaru H, Iizuka M, Ozaki S, Kudo N (1996) Spontaneous motoneuronal activity mediated by glycine and GABA in the spinal cord of rat fetuses in vitro. J Physiol Lond 497(Pt1):131–143

    PubMed  CAS  Google Scholar 

  83. O'Donovan MJ (1999) The origin of spontaneous activity in developing networks of the vertebrate nervous system. Curr Opin Neurobiol 9:94–104

    Article  PubMed  Google Scholar 

  84. O'Keefe J, Nadel L (1978) The Hippocampus as a Cognitive Map. Oxford University Press, Oxford

    Google Scholar 

  85. Obata K, Oide M, Tanaka H (1978) Excitatory and inhibitory actions of GABA and glycine on embryonic chick spinal neurons in culture. Brain Res 144:179–184

    Article  PubMed  CAS  Google Scholar 

  86. Owens DF, Boyce LH, Davis MB, Kriegstein AR (1996) Excitatory GABA responses in embryonic and neonatal cortical slices demonstrated by gramicidin perforated-patch recordings and calcium imaging. J Neurosci 16:6414–6423

    PubMed  CAS  Google Scholar 

  87. Owens DF, Kriegstein AR (2002) Is there more to GABA than synaptic inhibition? Nat Rev Neurosci 3:715–727

    Article  PubMed  CAS  Google Scholar 

  88. Papatheodoropoulos C, Kostopoulos G (2002) Spontaneous, low-frequency (approximately 2–3 Hz) field activity generated in rat ventral hippocampal slices perfused with normal medium. Brain Res Bull 57:187–193

    Article  PubMed  Google Scholar 

  89. Pasternack M, Voipio J, Kaila K (1993) Intracellular carbonic anhydrase activity and its role in GABA-induced acidosis in isolated rat hippocampal pyramidal neurones. Acta Physiol Scand 148:229–231

    Article  PubMed  CAS  Google Scholar 

  90. Payne JA, Rivera C, Voipio J, Kaila K (2003) Cation-chloride co-transporters in neuronal communication, development and trauma. Trends Neurosci 26:199–206

    Article  PubMed  CAS  Google Scholar 

  91. Preyer W (1885) Specielle Physiologie des Embryo. Grieben, Leipzig

    Google Scholar 

  92. Rivera C, Voipio J, Kaila K (2005) Two developmental switches in GABAergic signalling: the K+-Cl cotransporter KCC2 and carbonic anhydrase CAVII. J Physiol Lond 562:27–36

    Article  PubMed  CAS  Google Scholar 

  93. Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K, Pirvola U, Saarma M, Kaila K (1999) The K+/Cl co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397:251–255

    Article  PubMed  CAS  Google Scholar 

  94. Rivera C, Voipio J, Thomas-Crusells J, Li H, Emri Z, Sipilä S, Payne JA, Minichiello L, Saarma M, Kaila K (2004) Mechanism of activity-dependent downregulation of the neuron-specific K-Cl cotransporter KCC2. J Neurosci 24:4683–4691

    Article  PubMed  CAS  Google Scholar 

  95. Rohrbough J, Spitzer NC (1996) Regulation of intracellular Cl levels by Na(+)-dependent Cl cotransport distinguishes depolarizing from hyperpolarizing GABAA receptor-mediated responses in spinal neurons. J Neurosci 16:82–91

    PubMed  CAS  Google Scholar 

  96. Roos A, Boron WF (1981) Intracellular pH. Physiol Rev 61:296–434

    PubMed  CAS  Google Scholar 

  97. Rutecki PA, Lebeda FJ, Johnston D (1985) Epileptiform activity induced by changes in extracellular potassium in hippocampus. J Neurophysiol 54:1363–1374

    PubMed  CAS  Google Scholar 

  98. Ruusuvuori E, Li H, Huttu K, Palva JM, Smirnov S, Rivera C, Kaila K, Voipio J (2004) Carbonic anhydrase isoform VII acts as a molecular switch in the development of synchronous gamma-frequency firing of hippocampal CA1 pyramidal cells. J Neurosci 24:2699–2707

    Article  PubMed  CAS  Google Scholar 

  99. Schwartzkroin PA, Prince DA (1978) Cellular and field potential properties of epileptogenic hippocampal slices. Brain Res 147:117–130

    Article  PubMed  CAS  Google Scholar 

  100. Sernagor E, Young C, Egles C, Eglen SJ (2003) Developmental modulation of retinal wave dynamics: shedding light on the GABA saga. J Neurosci 23:7621–7629

    PubMed  CAS  Google Scholar 

  101. Sipilä S, Huttu K, Voipio J, Kaila K (2004) GABA uptake via GABA transporter-1 modulates GABAergic transmission in the immature hippocampus. J Neurosci 24:5877–5880

    Article  PubMed  CAS  Google Scholar 

  102. Sipilä ST, Huttu K, Soltesz I, Voipio J, Kaila K (2005) Depolarizing GABA acts on intrinsically bursting pyramidal neurons to drive giant depolarizing potentials in the immature hippocampus. J Neurosci 25:5280–5289

    Article  PubMed  CAS  Google Scholar 

  103. Sipilä ST, Huttu K, Voipio J, Kaila K (2006) Intrinsic bursting of immature CA3 pyramidal neurons and consequent giant depolarizing potentials are driven by a persistent Na current and terminated by a slow Ca-activated K current. Eur J Neurosci 23:2330–2338

    Article  PubMed  Google Scholar 

  104. Sipilä ST, Schuchmann S, Voipio J, Yamada J, Kaila K (2006) The cation-chloride cotransporter NKCC1 promotes sharp waves in the neonatal rat hippocampus. J Physiol 573:765–773

    Article  PubMed  CAS  Google Scholar 

  105. Sun D, Murali SG (1999) Na+-K+-2Cl cotransporter in immature cortical neurons: A role in intracellular Cl regulation. J Neurophysiol 81:1939–1948

    PubMed  CAS  Google Scholar 

  106. Sung KW, Kirby M, McDonald MP, Lovinger DM, Delpire E (2000) Abnormal GABAA receptor-mediated currents in dorsal root ganglion neurons isolated from Na-K-2Cl cotransporter null mice. J Neurosci 20:7531–7538

    PubMed  CAS  Google Scholar 

  107. Suzuki SS, Smith GK (1987) Spontaneous EEG spikes in the normal hippocampus, I. Behavioral correlates, laminar profiles and bilateral synchrony. Electroencephalogr Clin Neurophysiol 67:348–359

    Article  PubMed  CAS  Google Scholar 

  108. Thompson SM, Gahwiler BH (1989) Activity-dependent disinhibition, II. Effects of extracellular potassium, furosemide, and membrane potential on ECl in hippocampal CA3 neurons. J Neurophysiol 61:512–523

    PubMed  CAS  Google Scholar 

  109. Traub RD, Bibbig A, LeBeau FE, Buhl EH, Whittington MA (2004) Cellular mechanisms of neuronal population oscillations in the hippocampus in vitro. Ann Rev Neurosci 27:247–278

    Article  PubMed  CAS  Google Scholar 

  110. Tyzio R, Represa A, Jorquera I, Ben-Ari Y, Gozlan H, Aniksztejn L (1999) The establishment of GABAergic and glutamatergic synapses on CA1 pyramidal neurons is sequential and correlates with the development of the apical dendrite. J Neurosci 19:10372–10382

    PubMed  CAS  Google Scholar 

  111. Vanderwolf CH (1969) Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr Clin Neurophysiol 26:407–418

    Article  PubMed  CAS  Google Scholar 

  112. Vanhatalo S, Palva JM, Andersson S, Rivera C, Voipio J, Kaila K (2005) Slow endogenous activity transients and developmental expression of K+-Cl cotransporter 2 in the immature human cortex. Eur J Neurosci 22:2799–2804

    Article  PubMed  Google Scholar 

  113. Vanhatalo S, Tallgren P, Andersson S, Sainio K, Voipio J, Kaila K (2002) DC-EEG discloses prominent, very slow activity patterns during sleep in preterm infants. Clin Neurophysiol 113:1822–1825

    Article  PubMed  Google Scholar 

  114. Vardi N, Zhang LL, Payne JA, Sterling P (2000) Evidence that different cation chloride cotransporters in retinal neurons allow opposite responses to GABA. J Neurosci 20:7657–7663

    PubMed  CAS  Google Scholar 

  115. Wolff JR, Joo F, Dames W (1978) Plasticity in dendrites shown by continuous GABA administration in superior cervical ganglion of adult rat. Nature 274:72–74

    Article  PubMed  CAS  Google Scholar 

  116. Wong RK, Prince DA (1981) Afterpotential generation in hippocampal pyramidal cells. J Neurophysiol 45:86–97

    PubMed  CAS  Google Scholar 

  117. Wu C, Asl MN, Gillis J, Skinner FK, Zhang L (2005) An in vitro model of hippocampal sharp waves: regional initiation and intracellular correlates. J Neurophysiol 94:741–753

    Article  PubMed  Google Scholar 

  118. Yamada J, Okabe A, Toyoda H, Kilb W, Luhmann HJ, Fukuda A (2004) Cl uptake promoting depolarizing GABA actions in immature rat neocortical neurones is mediated by NKCC1. J Physiol (Lond) 557:829–841

    Article  CAS  Google Scholar 

  119. Yuste R, Katz LC (1991) Control of postsynaptic Ca2+ influx in developing neocortex by excitatory and inhibitory neurotransmitters. Neuron 6:333–344

    Article  PubMed  CAS  Google Scholar 

  120. Yuste R, Peinado A, Katz LC (1992) Neuronal domains in developing neocortex. Science 257:665–669

    Article  PubMed  CAS  Google Scholar 

  121. Zhang L, Spigelman I, Carlen PL (1991) Development of GABA-mediated, chloride-dependent inhibition in CA1 pyramidal neurones of immature rat hippocampal slices. J Physiol Lond 444:25–49

    PubMed  CAS  Google Scholar 

  122. Zhu L, Lovinger D, Delpire E (2005) Cortical neurons lacking KCC2 expression show impaired regulation of intracellular chloride. J Neurophysiol 93:1557–1568

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Kaila .

Editor information

Mark G. Darlison

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sipilä, S.T., Kaila, K. (2007). GABAergic Control of CA3-driven Network Events in the Developing Hippocampus. In: Darlison, M.G. (eds) Inhibitory Regulation of Excitatory Neurotransmission. Results and Problems in Cell Differentiation, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/400_2007_033

Download citation

Publish with us

Policies and ethics