Skip to main content

Environmental Water Pollution, Endocrine Interference and Ecotoxicity of 4-tert-Octylphenol: A Review

  • Chapter
  • First Online:
Reviews of Environmental Contamination and Toxicology Volume 248

Abstract

4-tert-Octylphenol is a degradation product of non-ionic surfactants alkylphenol polyethoxylates as well as raw material for a number of industrial applications. It is a multimedia compound having been detected in all environmental compartments such as indoor air and surface waters. The pollutant is biodegradable, but certain degradation products are more toxic than the parent compound. Newer removal techniques from environmental waters have been presented, but they still require development for large-scale applications. Wastewater treatment by plant enzymes such as peroxidases offers promise in total removal of 4-tert-octylphenol leaving less toxic degradation products. The pollutant’s endocrine interference has been well reported but more in oestrogens than in any other signalling pathways through which it is believed to exert toxicity on human and wildlife. In this paper we carried out a review of the activities of this pollutant in environmental waters, endocrine interference and relevance to its toxicities and concluded that inadequate knowledge of its endocrine activities impedes understanding of its toxicity which may frustrate current efforts at ridding the compound from the environment.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ademollo N, Ferrara F, Delise M, Fabietti F, Funari E (2008) Nonylphenol and octylphenol in human breast milk. Environ Int 34(7):984–987

    CAS  Google Scholar 

  • Ahbab MA, Barlas N, Karabulut G (2017) The toxicological effects of bisphenol A and octylphenol on the reproductive system of prepubertal male rats. Toxicol Ind Health 33(2):133–146

    CAS  Google Scholar 

  • Ahel M, Scully J, Hoigné J, Giger W (1994) Photochemical degradation of nonylphenol and nonylphenol polyethoxylates in natural waters. Chemosphere 28(7):1361–1368

    CAS  Google Scholar 

  • An BS, Ahn HJ, Kang HS, Jung EM, Yang H, Hong EJ, Jeung EB (2013) Effects of estrogen and estrogenic compounds, 4-tert-octylphenol, and bisphenol A on the uterine contraction and contraction-associated proteins in rats. Mol Cell Endocrinol 375:27–34

    CAS  Google Scholar 

  • Andersen HR, Wollenberger L, Halling-Sørensen B, Kusk KO (2001) Development of copepod nauplii to copepodites – a parameter for chronic toxicity including endocrine disruption. Environ Toxicol Chem 20:2821–2829

    CAS  Google Scholar 

  • Aneck-Hahn NH, Bornman MS, de Jager C (2009) Oestrogenic activity in drinking waters from a rural area in the Waterberg District, Limpopo Province, South Africa. Water SA 35:245–251

    CAS  Google Scholar 

  • Balest L, Mascolo G, Di Iaconi C, Lopez A (2008) Removal of endocrine disrupter compounds from municipal wastewater by an innovative biological technology. Water Sci Technol 58(4):953–956

    CAS  Google Scholar 

  • Barse A, Chakrabarti T, Ghosh T, Pal A, Jadhao S (2006) The one-tenth dose of LC50 of 4-tertbutylphenol causes endocrine disruption and metabolic changes in Cyprinus carpio. Pest Biochem Physiol 86:172–179

    CAS  Google Scholar 

  • Bendsen E, Laursen S, Olesen C (2001) Effect of 4-octylphenol on germ cell number in cultured human fetal gonads. Hum Reprod 16:236–243

    CAS  Google Scholar 

  • Bennie D (1999) Review of the environmental occurrence of alkylphenols and alkylphenol ethoxylates. Water Qual Res J Can 34:79–122

    CAS  Google Scholar 

  • Bian Q, Qian J, Xu LC, Chen JF, Song L, Wang XR (2006) The toxic effects of 4-tert-octylphenol on the reproductive system of male rats. Food Chem Toxicol 44:1355–1361

    CAS  Google Scholar 

  • Bianco M, Mita L, Portaccio M, Diano N, Sica V, De Luca B, Mita DG, Carratelli CR, Viggiano E (2011) Differential accumulation levels in the brain of rats exposed to the endocrine disruptor 4-tert-octylphenol (OP). Environ Toxicol Pharmacol 31:198–204

    CAS  Google Scholar 

  • Bina B, Mohammadi F, Amin M, Pourzamani H, Yavari Z (2018) Determination of 4-nonylphenol and 4-tert-octylphenol compounds in various types of wastewater and their removal rate. Chin J Chem Eng 26(1):183–190

    Google Scholar 

  • Bizarro C, Ros O, Vallejo A, Prieto A, Etxebarria N, Cajaraville MP, Ortiz-Zarragoitia M (2014) Intersex condition and molecular markers of endocrine disruption in relation with burdens of emerging pollutants in thick lip grey mullets (Chelon labrosus) from Basque estuaries (South-East Bay of Biscay). Mar Environ Res 96:19–28

    CAS  Google Scholar 

  • Blair BD, Crago JP, Hedman CJ, Klaper RD (2013) Pharmaceuticals and personal care products found in the Great Lakes above concentrations of environmental concern. Chemosphere 93:2116–2123

    CAS  Google Scholar 

  • Blake CA, Nair-Menon JU, Campbell GT (1997) Estrogen can protect splenocytes from the toxic effects of the environmental pollutant 4-tert-octylphenol. Endocrine 6(3):243–249

    CAS  Google Scholar 

  • Blake CA, Boockfor FR, Nair-Menon JU, Millette CF, Raychoudhury SS, McCoy GL (2004) Effects of 4-tert-octylphenol given in drinking water for 4 months on the male reproductive system of Fischer 344 rats. Reprod Toxicol 18:43–51

    CAS  Google Scholar 

  • Bledzka D, Gryglik D, Miller JS (2009) Photolytic degradation of 4-tert-octylphenol in aqueous solution. Environ Prot Eng 35:235–247

    CAS  Google Scholar 

  • Bonefeld-Jørgensen EC, Long M, Hofmeister MV, Vinggaard AM (2007) Endocrine-disrupting potential of bisphenol A, bisphenol A dimethacrylate, 4-n-nonylphenol, and 4-n-octylphenol in vitro: new data and a brief review. Environ Health Perspect 115:69–76

    Google Scholar 

  • Brooke D, Johnson I, Mitchell R, Watts C (2005) Environmental risk evaluation report: 4-tert-octylphenol. Environ Agency. www.environment-agency.gov.uk. Accessed 31 Mar 2016

  • Cajtham T (2015) Biodegradation of endocrine-disrupting compounds by ligninolytic fungi: mechanisms involved in the degradation. Environ Microbiol 17(12):4822–4834

    Google Scholar 

  • Calafat AM, Ye X, Wong L-Y, Reidy JA, Needham LL (2008) Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003–2004. Environ Health Perspect 116:39–44

    CAS  Google Scholar 

  • Calza P, Massolino C, Pelizzetti E, Minero C (2008) Solar driven production of toxic halogenated and nitroaromatic compounds in natural seawater. Sci Total Environ 398:196–202

    CAS  Google Scholar 

  • Certa H, Fedtke N, Wiegand HT, Muller AMF (1996) Toxicokinetics of p-tert-octylphenol in male Wistar rats. Arch Toxicol 71:112–122

    CAS  Google Scholar 

  • Céspedes R, Lacorte S, Ginebreda A, Barceló D (2008) Occurrence and fate of alkylphenols and alkylphenol ethoxylates in sewage treatment plants and impact on receiving waters along the Ter River (Catalonia, NE Spain). Environ Pollut 153(2):384–392

    Google Scholar 

  • Chai W, Sakamaki H, Kitanaka S, Saito M, Horiuchi A (2003) Biodegradation of bisphenol A by cultured cells of Caragana chamlaga. Biosci Biotechnol Biochem 67:218–220

    CAS  Google Scholar 

  • Chang X, Huang J, Cheng C, Sha W, Li X, Ji G, Deng S, Yu G (2010) Photocatalytic decomposition of 4-t-octylphenol over NaBiO3 driven by visible light: catalytic kinetics and corrosion products characterization. J Hazard Mater 173:765–772

    CAS  Google Scholar 

  • Chang YC, Fuzisawa S, Reddy MV, Kobayashi H, Yoshida E, Yajima Y, Hoshino T, Choi D (2016) Degradation of toxic compounds at low and medium temperature conditions using isolated fungus. Clean Soil Air Water 44(8):992–1000

    CAS  Google Scholar 

  • Chen JM, Zhang YP, Wang C, Sun Y, Fujimoto J, Ikenaga M (1992) O6-methylguanine-DNA methyltransferase activity in human tumors. Carcinogenesis 13(9):1503–1507

    CAS  Google Scholar 

  • Chen GW, Ding WH, Ku HY, Chao HR, Chen HY, Huang MC, Wang SL (2010) Alkylphenols in human milk and their relations to dietary habits in central Taiwan. Food Chem Toxicol 48:1939–1944

    CAS  Google Scholar 

  • Chen R, Yin P, Zhao L, Yu Q, Hong A, Duan S (2014) Spatial–temporal distribution and potential ecological risk assessment of nonylphenol and octylphenol in riverine outlets of Pearl River Delta, China. J Environ Sci 26:2340–2347

    Google Scholar 

  • Choi J, Eom J, Kim J, Lee S, Kim Y (2014) Association between some endocrine-disrupting chemicals and childhood obesity in biological samples of young girls: a cross-sectional study. Environ Toxicol Pharmacol 38:51–57

    CAS  Google Scholar 

  • Chokwe TB, Okonkwo JO, Sibali LL (2017) Distribution, exposure pathways, sources and toxicity of nonylphenol and nonylphenol ethoxylates in the environment. Water SA 43:529–543

    CAS  Google Scholar 

  • Croteau MC, Martyniuk CJ, Trudeau VL, Lean DRS (2008) Chronic exposure of Rana pipiens tadpoles to UVB radiation and the estrogenic chemical 4-tert-octylphenol. J Toxicol Environ Health A 71:134–144

    CAS  Google Scholar 

  • Croteau MC, Davidson M, Duarte-Guterman P, Wade M, Popesku JT, Wiens S, Lean DRS, Trudeau VL (2009) Assessment of thyroid system disruption in Rana pipiens tadpoles chronically exposed to UVB radiation and 4-tert-octylphenol. Aquat Toxicol 95:81–92

    CAS  Google Scholar 

  • Cruceru I, Iancu V, Petre J, Badea IA, Vladescu L (2012) HPLC-FLD determination of 4-nonylphenol and 4-tert-octylphenol in surface water samples. Environ Monit Assess 184:2783–2795

    CAS  Google Scholar 

  • Crump D, Lean D, Trudeau VL (2002) Octylphenol and UV-B radiation alter larval development and hypothalamic gene expression in the Leopard frog (Rana pipiens). Environ Health Persp 110:277–284

    CAS  Google Scholar 

  • Czech T, Barco Bonilla N, Gambus F, González RR, Marín-Sáez J, Vidal JLM, Frenich AG (2016) Fast analysis of 4-tert-octylphenol, pentachlorophenol and 4-nonylphenol in river sediments by QuEChERS extraction procedure combined with GC-QqQ-MS/MS. Sci Total Environ 557–558:681–687

    Google Scholar 

  • Dang Z (2016) Interpretation of fish biomarker data for identification, classification, risk assessment and testing of endocrine chemicals. Environ Int 92–93:422–441

    Google Scholar 

  • de Voogt P, Beer K, van der Wielen F (1997) Determination of alkylphenol ethoxylates in industrial and environmental samples. Trends Anal Chem 16(10):584–595

    Google Scholar 

  • Diao P, Chen Q, Wang R, Sun D, Cai Z, Wu H, Duan S (2017) Phenolic endocrine-disrupting compounds in the Pearl River Estuary: occurrence, bioaccumulation and risk assessment. Sci Total Environ 584–585:1100–1107

    Google Scholar 

  • Directive 2000/60/EC (2000) Establishment and framework for community action in the field of water policy. European Parliament and the Council of the European Union, Luxembourg

    Google Scholar 

  • Directive 2003/53/EC (2003) Amending for the 26th time the Council directive 76/769/EEC relating to restrictions on the marketing and use of certain dangerous substances and preparations (nonylphenol, nonylphenol ethoxylates and cement). European Parliament and the Council of the European Union, Luxembourg

    Google Scholar 

  • Dong RR, Yang SJ, Feng RJ, Fang LL, Sun YL, Zhang YG, Xie XJ, Wang DS (2014) Complete feminization of catfish by feeding Limnodilus, an annelid worm collected in contaminated streams. Environ Res 133:371

    CAS  Google Scholar 

  • Du YB, Li YY, Zhen YJ, Hu CB, Liu WH, Chen WZ, Sun ZW (2008) Toxic effects of Siganus oramin by dietary exposure to 4-tert-octylphenol. Bull Environ Contam Toxicol. https://doi.org/10.1007/s00128-008-9388-7

    CAS  Google Scholar 

  • EC (2013) Directive 2013/39/eu of the European Parliament and of the Council of 12 August 2013, amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:226:0001:0017:EN:PDF. Accessed 4 Nov 2016

  • ECETOC (2009) Guidance on identifying endocrine disrupting effects. Technical Report No. 206, 1–137

    Google Scholar 

  • El Gamal AA (2010) Biological importance of marine algae. Saudi Pharm J 18(1):1–25

    Google Scholar 

  • Environment Agency (2004) Proposed predicted-no-effect-concentrations (PNECs) for natural and synthetic steroid oestrogens in surface waters. P2–T04/1. R&D Technical Report, Bristol, UK

    Google Scholar 

  • Environment Agency UK (2005) Environmental risk evaluation report: 4-tert-Octylphenol Technical summary. Environment agency. ISBN 1844324109, 9781844324101, pp. 206

    Google Scholar 

  • Esteban S, Gorga M, González-Alonso S, Petrovic M, Barceló D, Valcárcel Y (2014) Monitoring endocrine disrupting compounds and estrogenic activity in tap water from Central Spain. Environ Sci Pollut Res 21:9297–9310

    CAS  Google Scholar 

  • EU (1994) EU Ad Hoc Working Party, III/5504/94. Draft 4. Assessment of potential risk is to the environment posed by medicinal products for human use, excluding products containing live genetically modified organisms

    Google Scholar 

  • EU REACH Regulation (EC) (2006) Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) and establishing a European Chemicals Agency: 850 (December 18 2006) (1907/2006)

    Google Scholar 

  • Evans R, Kortenkamp A, Martin O, McKinlay R, Orton F, Rosivatz E (2011) State of the art assessment of endocrine disrupters. 2nd Interim Report 135

    Google Scholar 

  • Ferguson PL, Iden CR, Brownawell BJ (2000) Analysis of alkylphenol ethoxylate metabolites in the aquatic environment using liquid chromatography–electrospray mass spectrometry. Anal Chem 72(18):4322–4330

    CAS  Google Scholar 

  • Ferrara F, Ademolllo N, Delise M, Fabietti F, Funari E (2008) Alkylphenols and their ethoxylates in seafood from the Tyrrhenian Sea. Chemosphere 72:1279–1285

    CAS  Google Scholar 

  • Ferreira-Leach AM, Hill EM (2001) Bioconcentration and distribution of 4-tert-octylphenol residues in tissues of the rainbow trout (Oncorhynchus mykiss). Mar Environ Res 51(1):75–89

    CAS  Google Scholar 

  • Furtado CM, von Mühlen C (2015) Endocrine disruptors in water filters used in the Rio dos Sinos Basin region, Southern Brazil. Braz J Biol 75(2 Suppl):S85–S90

    Google Scholar 

  • Gibs J, Stackelberg PE, Furlong ET, Meyer M, Zaugg SD, Lippincott RE (2007) Persistence of pharmaceuticals and other organic compounds in chlorinated drinking water as a function of time. Sci Total Environ 373(1):240–249

    CAS  Google Scholar 

  • Gledhill (1999) Nonylphenol and octylphenol and their ethoxylates – determination of the biodegradability of the CO2 evolution modified Sturm tests. OECD Guideline Reference Number: 301B SLI Report No 98-7-7403

    Google Scholar 

  • Gurban AM, Burtan D, Rotariu L, Bala C (2015) Manganese oxide based screen-printed sensor for xenoestrogens detection. Sensors Actuators B Chem 210:273–280

    CAS  Google Scholar 

  • Hamelin G, Charest-Tardif G, Krishnan K, Cyr DG, Charbonneau M, Devine PJ, Haddad S, Cooke GM, Schrader T, Tardif R (2008) Determination of p-tert-octylphenol in blood and tissues by gas chromatography coupled with mass spectrometry. J Anal Toxicol 32(4):303–307

    CAS  Google Scholar 

  • Hanioka N, Jinno H, Chung YS, Nishimura T, Tanaka-Kagawa T, Ando M (2000) Effect of 4-tert-octylphenol on cytochrome P450 enzymes in rat liver. Arch Toxicol 73(12):625–631

    CAS  Google Scholar 

  • Hanioka N, Isobe T, Ohkawara S, Tanaka-Kagawa T, Jinno H (2017) Glucuronidation of 4-tert-octylphenol in humans, monkeys, rats, and mice: an in vitro analysis using liver and intestine microsomes. Arch Toxicol 91(3):1227–1232

    CAS  Google Scholar 

  • Haselman JT, Kosian PA, Korte JJ, Olmstead AW, Iguchi T, Johnson RD, Degitz SJ (2016) Development of the larval amphibian growth and development assay: effects of chronic 4-tert-octylphenol or 17β-trenbolone exposure in Xenopus laevis from embryo to juvenile. J Appl Toxicol 36:1639–1650

    CAS  Google Scholar 

  • Hatch EE, Nelson JW, Stahlhut RW, Webster TF (2010) Association of endocrine disruptors and obesity: perspectives from epidemiological studies. Int J Androl 33:324–332

    CAS  Google Scholar 

  • Helguero LA, Faulds MH, Gustafsson JA, Haldosén LA (2005) Estrogen receptors alfa and beta differentially regulate proliferation and apoptosis of the normal murine mammary epithelial cell line HC11. Oncogene 24:6605–6616

    CAS  Google Scholar 

  • Hotz B, Arndt M, Dullat S, Bhargava S, Buhr HJ, Hotz HG (2007) Epithelial to mesenchymal transition: expression of the regulators snail, slug, and twist in pancreatic cancer. Clin Cancer Res 13(16):4769–4776

    CAS  Google Scholar 

  • Houlahan JE, Findlay CS, Schmidt BR, Meyer AH, Kuzmin SL (2000) Quantitative evidence for global amphibian population declines. Nature 404:752–755

    CAS  Google Scholar 

  • Huang L, Jing H, Cheng Z, Dong W (2013) Different photodegradation behavior of 4-tert-octylphenol under UV and VUV irradiation in aqueous solution. J Photochem Photobiol A Chem 251:69–77

    CAS  Google Scholar 

  • Hughes PJ, McLellan H, Lowes DA, Kahn SZ, Bilmen JG, Tovey SC, Godfrey RE, Michell RH, Kirk CJ, Michelangeli F (2000) Estrogenic alkylphenols induce cell death by inhibiting testis endoplasmic reticulum Ca2+ pumps. Biochem Biophys Res Commun 277(3):568–574

    CAS  Google Scholar 

  • Hwang KA, Park SH, Yi BR, Choi KC (2011) Gene alterations of ovarian cancer cells expressing estrogen receptors by estrogen and bisphenol a using microarray analysis. Lab Anim Res 27:99–107

    Google Scholar 

  • Hwang KA, Kang NH, Yi BR, Lee HR, Park MA, Choi KC (2012) Genistein, a soy phytoestrogen, prevents the growth of BG-1 ovarian cancer cells induced by 17beta-estradiol or bisphenol A via the inhibition of cell cycle progression. Int J Oncol 42:733–740

    Google Scholar 

  • Jambor T, Tvrdá E, Bistáková J, Forgács Z, Lukáč N (2016) The potential impact of 4-octylphenol on the basal and stimulated testosterone formation by isolated mice Leydig cells. J Cent Eur Agric 17(4):1274–1286

    Google Scholar 

  • Janicki T, Krupinski M, Długonsk J (2016) Degradation and toxicity reduction of the endocrine disruptors nonylphenol, 4-tert-octylphenol and 4-cumylphenol by the nonligninolytic fungus Umbelopsis isabellina. Bioresour Technol 200:223–229

    CAS  Google Scholar 

  • Jarošová B, Bláha L, Giesy JP, Hilscherová K (2014) What level of estrogenic activity determined by in vitro assays in municipal waste waters can be considered as safe? Environ Int 64:98–109

    Google Scholar 

  • Jin X, Jiang G, Guolan Huang G, Liu J, Zhou Q (2004) Determination of 4-tert-octylphenol, 4-nonylphenol and bisphenol A in surface waters from the Haihe River in Tianjin by gas chromatography–mass spectrometry with selected ion monitoring. Chemosphere 56:1113–1119

    CAS  Google Scholar 

  • Johnson AC, Belfroid A, Di Corcia A (2000a) Estimating steroid estrogen inputs into activated sludge treatment works and observations on their removal from the effluent. Sci Total Environ 256:163–173

    CAS  Google Scholar 

  • Johnson AC, White C, Bhardwaj L, Jurgens MD (2000b) Environmental chemistry – potential for octylphenol to biodegrade in some English rivers. Environ Toxicol Chem 19(10):2486–2492

    CAS  Google Scholar 

  • Jonkers N, Knepper TP, de Voogt P (2001) Aerobic biodegradation studies of nonylphenol ethoxylates in river water using liquid chromatography−electrospray tandem mass spectrometry. Environ Sci Technol 35(2):335–340

    CAS  Google Scholar 

  • Jung EM, An BS, Yang H, Choi KC, Jeung EB (2012) Biomarker genes for detecting estrogenic activity of endocrine disruptors via estrogen receptors. Int J Environ Res Public Health 9:698–711

    CAS  Google Scholar 

  • Junk DJ, Cipriano R, Stampfer M, Jackson MW (2013) Constitutive CCND1/CDK2 activity substitutes for p53 loss, or MYC or oncogenic RAS expression in the transformation of human mammary epithelial cells. PLoS One 8:e53776

    CAS  Google Scholar 

  • Kaptaner B (2016) Cytotoxic effects of 4-octylphenol on fish hepatocytes. Cytotechnology 68:1577–1583

    CAS  Google Scholar 

  • Katsuda S, Yoshida M, Watanabe G, Taya K, Maekawa A (2000) Irreversible effects of neonatal exposure to p-tert-octylphenol on the reproductive tract in female rats. Toxicol Appl Pharmacol 165:217–226

    CAS  Google Scholar 

  • Kawaguchi M, Ito R, Sakui N, Okanouchi N, Saito K, Seto Y, Nakazawa H (2007) Stir-bar sorptive extraction, with in situ deconjugation, and thermal desorption with in-tube silylation, followed by gas chromatography-mass spectrometry for measurement of urinary 4-nonylphenol and 4-tert-octylphenol glucuronides. Anal Bioanal Chem 388:391–398

    CAS  Google Scholar 

  • Kelessidis A, Stasinakis AS (2012) Comparative study of the methods used for the treatment and final disposal of sewage sludge in European countries. Waste Manag 32:1186–1195

    CAS  Google Scholar 

  • Kennedy RH, Pelletier JH, Tupper EJ, Hutchinson LM, Gosse JA (2012) Estrogen mimetic 4-tert-octylphenol enhances Ige-mediated degranulation of Rbl-2H3 mast cells. J Toxic Environ Health A 75(24):1451–1455

    CAS  Google Scholar 

  • Kim SK, Kim BK, Shim JH, Gil JE, Yoon YD, Kim JH (2006) Nonylphenol and octylphenol-induced apoptosis in human embryonic stem cells is related to Fas-Fas ligand pathway. Toxicol Sci 94(2):310–321

    CAS  Google Scholar 

  • Kim J, Kang EJ, Park MN, Lee JE, Hong SH, An SM, Kim SC, Hwang DY, An BS (2014) Adverse effects of 4-tert-octylphenol on the production of oxytocin and hCG in pregnant rats. Lab Anim Res 30(3):123–130

    Google Scholar 

  • Kjeldsen LS, Ghisari M, Bonefeld-Jørgensen EC (2013) Currently used pesticides and their mixtures affect the function of sex hormone receptors and aromatase enzyme activity. Toxicol Appl Pharmacol 272:453–464

    CAS  Google Scholar 

  • Kooistra WHCF, Sarno D, Balzano S, Gu H, Andersen RA, Zingone A (2008) Global diversity and biogeography of skeletonema species (Bacillariophyta). Protist 159:177–193

    CAS  Google Scholar 

  • Korner W, Bolz U, Submuth W, Hiller G, Schuller W, Hanf V, Hagenmaier H (2000) Input/output balance of estrogenic active compounds in a major municipal sewage plant in Germany. Chemosphere 40:1131–1142

    CAS  Google Scholar 

  • Kovarova J, Blahova J, Divisova L, Svobodova Z (2013) Alkylphenol ethoxylates and alkylphenols update information on occurrence, fate and toxicity in aquatic environment. Pol J Vet Sci 16(4):763–772

    CAS  Google Scholar 

  • Kretschmer XC, Baldwin WS (2005) CAR and PXR: xenosensors of endocrine disrupters? Chem Biol Interact 155:111–128

    CAS  Google Scholar 

  • Krupinski M, Janicki T, Pałecz B, Długonski J (2014) Biodegradation and utilization of 4-n- nonylphenol by Aspergillus versicolor as a sole carbon and energy source. J Hazard Mater 280:678–684

    CAS  Google Scholar 

  • Kuch HM, Ballschmiter K (2001) Determination of endocrine disrupting phenolic compounds and estrogens in surface and drinking water by HRGC-(NCI)-MS in the pictogram per liter range. Environ Sci Technol 35(15):3201–3206

    CAS  Google Scholar 

  • Länge R, Hutchinson TH, Croudace CP, Siegmund F, Schweinfurth H, Hampe P, Panter GH, Sumpter JP (2001) Effects of the synthetic estrogen 17 alpha-ethinylestradiol on the lifecycle of the fathead minnow (Pimephales promelas). Environ Toxicol Chem 20(6):1216–1227

    Google Scholar 

  • Lee HR, Choi KC (2013) 4-tert-Octylphenol stimulates the expression of cathepsins in human breast cancer cells and xenografted breast tumors of a mouse model via an estrogen receptor mediated signalling pathway. Toxicology 304:13–20

    CAS  Google Scholar 

  • Lee HR, Hwang KA, Nam KH, Kim HC, Choi KC (2014) Progression of breast cancer cells was enhanced by endocrine-disrupting chemicals, triclosan and octylphenol, via an estrogen receptor-dependent signalling pathway in cellular and mouse xenograft models. Chem Res Toxicol 27:834–842

    CAS  Google Scholar 

  • Leusch FDL, De Jager C, Levi Y, Lim R, Puijker L, Sacher F, Tremblay LA, Wilson VS, Chapman HF (2010) Comparison of five in vitro bioassays to measure estrogenic activity in environmental waters. Environ Sci Technol 44(10):3853–3860

    CAS  Google Scholar 

  • Li Z, Zhang H, Gibson M, Jiangling L (2012) An evaluation on combination effects of phenolic endocrine disruptors by estrogen receptor binding assay. Toxicol In Vitro 26:769–774

    CAS  Google Scholar 

  • Li L-X, Chen L, Meng X-Z, Chen B-H, Chen S-Q, Zhao Y, Zhao L-F, Liang Y, Yang Y-H (2013) Exposure levels of environmental endocrine disruptors in mother-newborn pairs in China and their placental transfer characteristics. PLoS One 8(5):e62526

    CAS  Google Scholar 

  • Liao C, Kannan K (2014) A survey of alkylphenols, bisphenols, and triclosan in personal care products from China and the United States. Arch Environ Contam Toxicol 67:50–59

    CAS  Google Scholar 

  • Lin WC, Wang SL, Cheng CY, Ding WH (2009) Determination of alkylphenol residues in breast and commercial milk by solid-phase extraction and gas chromatography–mass spectrometry. Food Chem 114(2):753–757

    CAS  Google Scholar 

  • Lin Y, Sun X, Qiu L, Wei J, Huang Q, Fang C, Ye T, Kang M, Shen H, Dong S (2013) Exposure to bisphenol A induces dysfunction of insulin secretion and apoptosis through the damage of mitochondria in rat insulinoma (INS-1) cells. Cell Death Dis 4:e460

    CAS  Google Scholar 

  • Liu D, Wu S, Xu H, Zhang Q, Zhang S, Shi L, Yao C, Liu Y, Cheng J (2017) Distribution and bioaccumulation of endocrine disrupting chemicals in water, sediment and fishes in a shallow 36 Chinese freshwater lake: implications for ecological and human health risks. Ecotoxicol Environ Saf 140:222–229

    Google Scholar 

  • Loos R, Locoro G, Comero S, Contini S, Schwesi D, Werres F, Balsaa P, Gans O, Weiss S, Blaha L, Bolchi M, Gawlik BM (2010) Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water. Water Res 44:4115–4126

    CAS  Google Scholar 

  • Lopez-Espinosa MJ, Freire C, Arrebola JP, Navea N, Taoufiki J, Fernandez MF, Ballesteros O, Prada R, Olea N (2009) Nonylphenol and octylphenol in adipose tissue of women in Southern Spain. Chemosphere 76:847–852

    CAS  Google Scholar 

  • Lu Z, Gan J (2013) Oxidation of nonylphenol and octylphenol by manganese dioxide: kinetics and pathways. Environ Pollut 180:214–220

    CAS  Google Scholar 

  • Luigi V, Giuseppe M, Claudio R (2015) Emerging and priority contaminants with endocrine active potentials in sediments and fish from the River Po (Italy). Environ Sci Pollut Res 22:14050–14066

    CAS  Google Scholar 

  • Luo Y, Guo W, Ngo HH, Nghiem LD, Hai FI, Zhang J, Liang S, Wang XC (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473–474:619–641

    Google Scholar 

  • Lv S, Wu C, Lu D, Qi X, Xu H, Guo J, Liang W, Chang X, Wang G, Zhou Z (2016) Birth outcome measures and prenatal exposure to 4-tert-octylphenol. Environ Pollut 212:65–70

    CAS  Google Scholar 

  • Maddigapu PR, Minella M, Vione D, Maurino V, Minero C (2010) Modeling phototransformation reactions in surface water bodies: 2, 4-dichloro-6-nitrophenol as a case study. Environ Sci Technol 45:209–214

    Google Scholar 

  • Madsen LL, Korsgaard B, Bjerregaard P (2006) Oral single pulse exposure of flounder Platichthys flesus to 4-tert-octylphenol: relations between tissue levels and estrogenic effects. Mar Environ Res 61:352–362

    CAS  Google Scholar 

  • Mandin C, Mercier F, Ramalho O, Lucas JP, Gilles E, Blanchard O, Bonvallot N, Glorennec P, Le Bot B (2016) Semi-volatile organic compounds in the particulate phase in dwellings: a nationwide survey in France. Atmos Environ 136:82–94

    CAS  Google Scholar 

  • Mannelli C, Ietta F, Avanzati AM, Skarzynski D, Paulesu L (2015) Biological tools to study the effects of environmental contaminants at the feto-maternal interface. Dose Response 13:1559325815611902

    Google Scholar 

  • Marco-Urrea E, García-Romera I, Aranda E (2015) Potential of non-ligninolytic fungi in bioremediation of chlorinated and polycyclic aromatic hydrocarbons. New Biotechnol 32(6):620–628

    CAS  Google Scholar 

  • Mastrup M, Jensen RL, Schafer AI, Khan S (2001) Fate modeling – an important tool for water recycling. In: Scha¨fer AI, Sherman P, Waite TD (eds) Recent advances in water recycling technologies. Brisbane, Australia, pp 103–112

    Google Scholar 

  • Matamoros V, Salvadó V (2013) Evaluation of a coagulation/flocculation-lamellar clarifier and filtration-UV-chlorination reactor for removing emerging contaminants at full-scale wastewater treatment plants in Spain. J Environ Manag 117:96–102

    CAS  Google Scholar 

  • Mayer T, Bennie D, Rosa F, Rekas G, Palabrica V, Schachtschneider J (2007) Occurrence of alkylphenolic substances in a Great Lakes coastal marsh, Cootes Paradise, ON, Canada. Environ Pollut 147:683–690

    CAS  Google Scholar 

  • Mazellier P, Leverd J (2003) Transformation of 4-tert-octylphenol by UV irradiation and by an H2O2/UV process in aqueous solution. Photochem Photobiol Sci 2:946–953

    CAS  Google Scholar 

  • Meeker JD (2010) Exposure to environmental endocrine disrupting compounds and men’s health. Maturitas 66:236–241

    CAS  Google Scholar 

  • Mertens B, Simon C, Bossuyt MV, Onghena M, Vandermarken T, Langenhove KV, Demaegdte H, Hoeck EV, Loco JV, Vandermeiren K (2016) Investigation of the genotoxicity of substances migrating from polycarbonate replacement baby bottles to identify chemicals of high concern. Food Chem Toxicol 89:126–137

    CAS  Google Scholar 

  • MITI-List (2002) Biodegradation and bioaccumulation of existing chemical substances under the Chemical Substance Control Law. National Institute of Technology and Evaluation, Japan

    Google Scholar 

  • Moon DS, Song HG (2012) Degradation of alkylphenols by white rot fungus Irpex lacteus and its manganese peroxidase. Appl Biochem Biotechnol 168(3):542–549

    CAS  Google Scholar 

  • Nagarnaik PM, Mills MA, Boulanger B (2010) Concentrations and mass loadings of hormones, alkylphenols, and alkylphenol ethoxylates in healthcare facility wastewaters. Chemosphere 78(8):1056–1062

    CAS  Google Scholar 

  • Narita S, Goldblum RM, Watson CS, Brooks EG, Estes DM, Curran EM, Midoro-Horiuti T (2007) Environmental estrogens induce mast cell degranulation and enhance IgE-mediated release of allergic mediators. Environ Health Perspect 115:48–52

    CAS  Google Scholar 

  • Nguyen L, Hai FI, Nghiem LD, Kang J, Price WE, Park C, Yamamoto K (2014) Enhancement of removal of trace organic contaminants by powdered activated carbon dosing into membrane bioreactors. J Taiwan Inst Chem Eng 45(2):571–578

    CAS  Google Scholar 

  • OECD (2010) Draft report of phase 2 of the validation of the fish sexual development test. http://www.oecd.org/env/ehs/testing

  • Oketola AA, Fagbemigun TK (2013) Determination of nonylphenol, octylphenol and bisphenol-A in water and sediments of two major river in Lagos, Nigeria. J Environ Prot 4:38–45

    Google Scholar 

  • Olaniyan LWB, Mkwetshana N, Okoh AI (2016) Triclosan in water, implications for human and environmental health. Springerplus 5:1639

    CAS  Google Scholar 

  • Paris F, Balaguer P, Terouanne B, Servant N, Lacoste C, Cravedi JP, Nicolas JC, Sultan C (2002) Phenylphenols, biphenols, bisphenol-A and 4-tert-octylphenol exhibit alpha and beta estrogen activities and antiandrogen activity in reporter cell lines. Mol Cell Endocrinol 193:43–49

    CAS  Google Scholar 

  • Park MA, Hwang KA, Lee HR, Yi BR, Choi KC (2011) Cell growth of BG-1 ovarian cancer cells was promoted by 4-tert-octylphenol and 4-nonylphenol via downregulation of TGF-β Receptor 2 and upregulation of c-myc. Toxicol Res 27(4):253–259

    CAS  Google Scholar 

  • Pérez-Albaladejo E, Fernandes D, Lacorte S, Porte C (2017) Comparative toxicity, oxidative stress and endocrine disruption potential of plasticizers in JEG-3 human placental cells. Toxicol In Vitro 38:41–48

    Google Scholar 

  • Perron MC, Juneau P (2011) Effect of endocrine disrupters on photosystem II energy fluxes of green algae and cyanobacteria. Environ Res 111(4):520–529

    CAS  Google Scholar 

  • Petersen K, Heiaas HH, Tollefsen KE (2014) Combined effects of pharmaceuticals, personal care products, biocides and organic contaminants on the growth of Skeletonema pseudocostatum. Aquat Toxicol 150:45–54

    CAS  Google Scholar 

  • Petrovic M, Eljarrat E, Lopez de Alda MJ, Barcelo D (2002) Recent advances in the mass spectrometric analysis related to endocrine disrupting compounds in aquatic environmental samples. J Chromatogr A 974(1–2):23–51

    CAS  Google Scholar 

  • Phan HV, Hai FI, Zhang R, Kang J, Price WE, Nghiem LD (2016) Bacterial community dynamics in an anoxic-aerobic membrane bioreactor – impact on nutrient and trace organic contaminant removal. Int Biodeterior Biodegrad 109:61–72

    CAS  Google Scholar 

  • Pisapia L, Del Pozzo G, Barba P, Caputo L, Mita L, Viggiano E, Russo GL, Nicolucci C, Rossi S, Bencivenga U, Mita DG, Diano N (2012) Effects of some endocrine disruptors on cell cycle progression and murine dendritic cell differentiation. Gen Comp Endocrinol 178:54–63

    CAS  Google Scholar 

  • Pocar P, Augustin R, Gandolfi F, Fischer B (2003) Toxic effects of in vitro exposure to p-tert-octylphenol on bovine oocyte maturation and developmental competence. Biol Reprod 69:462–468

    CAS  Google Scholar 

  • Porter KL, Olmstead AW, Kumsher DM, Dennis WE, Sprando RL, Holcombe GW, Korte JJ, Lindberg-Livingston A, Degitz SJ (2011) Effects of 4-tert-octylphenol on Xenopus tropicalis in a long term exposure. Aquat Toxicol 103(3–4):159–169

    CAS  Google Scholar 

  • Pothitou P, Voutsa D (2008) Endocrine disrupting compounds in municipal and industrial wastewater treatment plants in Northern Greece. Chemosphere 73:1716–1723

    CAS  Google Scholar 

  • Puy-Azurmendi E, Ortiz-Zarragoitia M, Villagrasa M, Kuster M, Aragón P, Atienza J, Puchades R, Maquieira A, Domínguez C, López de Alda M, Fernandes D, Porte C, Bayona JM, Barceló D, Cajaraville MP (2013) Endocrine disruption in thicklip grey mullet (Chelon labrosus) from the Urdaibai Biosphere Reserve (Bay of Biscay, Southwestern Europe). Sci Total Environ 443:233–244

    CAS  Google Scholar 

  • Qhanya LB, Mthakathi NT, Boucher CE, Mashele SS, Theron CW, Syed K (2017) Isolation and characterisation of endocrine disruptor nonylphenol-using bacteria from South Africa. S Afr J Sci 113(5–6):1–7

    Google Scholar 

  • Qian J, Bian Q, Cui L, Chen J, Song L, Wang X (2006) Octylphenol induces apoptosis in cultured rat sertoli cells. Toxicol Lett 166:178–186

    CAS  Google Scholar 

  • Qin PF, Liu RT, Pan XR, Fang XY, Mou Y (2010) Impact of carbon chain length on binding of perfluoroalkyl acids to bovine serum albumin determined by spectroscopic methods. J Agric Food Chem 58:5561–5567

    CAS  Google Scholar 

  • Qin Y, Chen M, Wu W, Xu B, Tang R, Chen X, Du G, Lu C, Meeker JD, Zhou Z, Xia Y, Wang X (2013) Interactions between urinary 4-tert-octylphenol levels and metabolism enzyme gene variants on idiopathic male infertility. PLoS One 8(3):e59398

    CAS  Google Scholar 

  • Rajendran R, Huang S, Lin CC, Kirschner R (2017) Biodegradation of the endocrine disrupter 4-tert-octylphenol by the yeast strain Candida rugopelliculosa RRKY5 via phenolic ring hydroxylation and alkyl chain oxidation pathways. Bioresour Technol 226:55–64

    CAS  Google Scholar 

  • Rehan M, Ahmad E, Sheikh IA, Abuzenadah AM, Damanhouri GA, Bajouh OS, Samera F, AlBasri SF, Assiri MM, Beg MA (2015) Androgen and progesterone receptors are targets for bisphenol A (BPA), 4-methyl-2,4-bis-(p-hydroxyphenyl)pent-1-ene. A potent metabolite of BPA, and 4-tert-octylphenol: a computational insight. PLoS One 10(9):e0138438

    Google Scholar 

  • Reis AR, Sakakibara Y (2012) Enzymatic degradation of endocrine-disrupting chemicals in aquatic plants and relations to biological Fenton reaction. Water Sci Technol 66(4):775–782

    CAS  Google Scholar 

  • Reis AR, Tabei K, Sakakibara Y (2014) Oxidation mechanism and overall removal rates of endocrine disrupting chemicals by aquatic plants. J Hazard Mater 265:79–88

    CAS  Google Scholar 

  • Richardson SD, Postigo C (2011) Drinking water disinfection by-products. In: Barceló D (ed) Emerging organic contaminants and human health. The handbook of environmental chemistry, vol 20. Springer, Berlin

    Google Scholar 

  • Routledge EJ, Sumpter JP (1997) Structural features of alkylphenolic chemicals associated with estrogenic activity. J Biol Chem 272:3280–3288

    CAS  Google Scholar 

  • Rutishauser BV, Pesonen M, Escher BI, Ackermann GE, Aerni HR, Suter MJF, Eggen IL (2004) Comparative analysis of estrogenic activity in sewage treatment plant effluents involving three in vitro assays and chemical analysis of steroids. Environ Toxicol Chem 23:857–864

    CAS  Google Scholar 

  • Saggu S, Sakeran MI, Zidan N, Tousson E, Mohan A, Rehman H (2014) Ameliorating effect of chicory (Cichorium intybus L.) fruit extract against 4-tert-octylphenol induced liver injury and oxidative stress in male rats. Food Chem Toxicol 72:138–146

    CAS  Google Scholar 

  • Sahambi SK, Pelland A, Cooke GM, Schrader T, Tardif R, Charbonneau M, Krishnan K, Haddad S, Cyr DG, Devine PJ (2010) Oral p-tert-octylphenol exposures induce minimal toxic or estrogenic effects in adult female Sprague-Dawley rats. J Toxic Environ Health A 73:607–622

    CAS  Google Scholar 

  • Saito I, Onuki A, Seto H (2004) Indoor air pollution by alkylphenols in Tokyo. Indoor Air 14:325–332

    CAS  Google Scholar 

  • Salapasidou M, Samara C, Voutsa D (2011) Endocrine disrupting compounds in the atmosphere of the urban area of Thessaloniki, Greece. Atmos Environ 45:3720–3729

    CAS  Google Scholar 

  • Salgueiro-Gonzalez N, López de Alda MJ, Muniategui-Lorenzo S, Prada-Rodríguez D, Barceló D (2015a) Analysis and occurrence of endocrine-disrupting chemicals in airborne particles. Trends Anal Chem 66:45–52

    CAS  Google Scholar 

  • Salgueiro-Gonzalez N, Turnes-Caroua I, Viñas-Diéguez L, Muniategui-Lorenzo S, López-Mahía P, Prada-Rodríguez D (2015b) Occurrence of endocrine disrupting compounds in five estuaries of the northwest coast of Spain: ecological and human health impact. Chemosphere 131:241–247

    CAS  Google Scholar 

  • Salgueiro-Gonzalez N, Turnes-Carou I, Besada V, Muniategui-Lorenzo S, Lopez-Mahia P, Prada-Rodriguez D (2015c) Occurrence, distribution and bioaccumulation of endocrine disrupting compounds in water, sediment and biota samples from a European river basin. Sci Total Environ 529:121–130

    CAS  Google Scholar 

  • Saputra F, Yen CH, Hsieh CY, Ou TY, Risjani Y, Cheah WK, Hu SY (2016) Toxicity effects of the environmental hormone 4-tert-octylphenol in zebrafish (Danio rerio). Int J Mar Sci 6(4):1–12

    Google Scholar 

  • Schug TT, Janesick A, Blumberg B, Heindel JJ (2011) Endocrine disrupting chemicals and disease susceptibility. J Steroid Biochem Mol Biol 127(3–5):204–215

    CAS  Google Scholar 

  • Scifinder Scholar (2011) Data calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 @ 1994–2011 ACD/Labs

    Google Scholar 

  • Sengupta A, Lyons JM, Smith DJ, Heil A, Drewes JE, Snyder SA, Maruya KA (2014) The occurrence and fate of chemicals of emerging concern (CECs) in coastal urban rivers receiving discharge of treated municipal wastewater effluent. Environ Toxicol Chem 33:350–358

    CAS  Google Scholar 

  • Shangari N, Chan TS, O’Brien PJ (2005) Sulfation and glucuronidation of phenols: implications in coenzyme Q metabolism. Methods Enzymol 400:342–359

    CAS  Google Scholar 

  • Sharma VK, Anquandah GAK, Yngard RA, Kim H, Fekete J, Bouzek K, Ray AK, Golovko D (2009) Nonylphenol, octylphenol, and bisphenol-A in the aquatic environment: a review on occurrence, fate, and treatment. J Environ Sci Health A 44(5):423–442

    CAS  Google Scholar 

  • Shekhar S, Sood S, Showkat S, Lite C, Chandrasekhar A, Vairamani M, Barathi S, Santosh W (2017) Detection of phenolic endocrine disrupting chemicals from maternal blood plasma and amniotic fluid in Indian population. Gen Comp Endocrinol 241:100–107

    CAS  Google Scholar 

  • Shin S, Go RE, Kim CW, Hwang KA, Nam KH, Choi KC (2016) Effect of benzophenone-1 and octylphenol on the regulation of epithelial-mesenchymal transition via an estrogen receptor dependent pathway in estrogen receptor expressing ovarian cancer cells. Food Chem Toxicol 93:58–65

    CAS  Google Scholar 

  • Shiue I (2013) Urinary environmental chemical concentrations and vitamin D are associated with vision, hearing, and balance disorders in the elderly. Environ Int 53:41–46

    CAS  Google Scholar 

  • SIDS (1994) SIDS dossier on the OECD HPV chemicals phenol, 4-(1,1,3,3,-tetramethylbutyl), including SIDS IAR (initial assessment report) (1994) on octylphenol. OECD, Paris

    Google Scholar 

  • Skakkebaek NE, Rajpert-De Meyts E, Main KM (2001) Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum Reprod 16:972–978

    CAS  Google Scholar 

  • Soto AM, Sonnenschein C (2010) Environmental causes of cancer: endocrine disruptors as carcinogens. Nat Rev Endocrinol 6:363–370

    CAS  Google Scholar 

  • Staniszewska M, Falkowska L, Grabowski P, Kwaśniak J, Mudrak-Cegiołka S, Reindl AR, Sokołowski A, Szumiło E, Zgrundo A (2014) Bisphenol A, 4-tert-octylphenol, and 4-nonylphenol in the Gulf of Gdańsk (Southern Baltic). Arch Environ Contam Toxicol 67(3):335–347

    CAS  Google Scholar 

  • Sunjog K, Kolarevic S, Kracun-Kolarevic M, Visnjic-Jeftic Z, Skoric S, Gacic Z, Lenhardt M, Vasic N, Vukovic-Gacic B (2016) Assessment of status of three water bodies in Serbia based on tissue metal and metalloid concentration (ICP-OES) and genotoxicity (comet assay). Environ Pollut 213:600–607

    CAS  Google Scholar 

  • Swan SH (2008) Environmental phthalate exposure in relation to reproductive outcomes and other health endpoints in humans. Environ Res 108:177–184

    CAS  Google Scholar 

  • Tamagawa Y, Hirai H, Kawai S, Nishida T (2007) Removal of estrogenic activity of 4-tert-octylphenol by ligninolytic enzymes from white rot fungi. Environ Toxicol 22(3):281–286

    CAS  Google Scholar 

  • Tan BLL, Mohd MA (2003) Analysis of selected pesticides and alkylphenols in human cord blood by gas chromatograph–mass spectrometer. Talanta 61:385–391

    CAS  Google Scholar 

  • Toyama T, Murashita M, Kobayashi K, Kikuchi S, Sei K, Tanaka Y, Ike M, Mori K (2011) Acceleration of nonylphenol and 4-tert-octylphenol degradation in sediment by Phragmites australis and associated rhizosphere bacteria. Environ Sci Technol 45(15):6524–6530

    CAS  Google Scholar 

  • Trinh T, van den Akker B, Coleman HM, Stuetz RM, Le-Clech P, Khan SJ (2012) Removal of endocrine disrupting chemicals and microbial indicators by a decentralised membrane bioreactor for water reuse. J Water Reuse Desal 02(2):67–73

    CAS  Google Scholar 

  • Tsuda T, Takino A, Kojima M, Harada H, Muraki K, Tsuji M (2000) 4-Nonylphenols and 4-tert-octylphenol in water and fish from rivers flowing into Lake Biwa. Chemosphere 41(5):757–762

    CAS  Google Scholar 

  • Tsuda T, Takino A, Muraki K, Harada H, Kojima M (2001) Evaluation of 4-nonylphenols and 4-tert-octylphenol contamination of fish in rivers by laboratory accumulation and excretion experiments. Water Res 35(7):1786–1792

    CAS  Google Scholar 

  • Ulutas OK, Yildiz N, Durmaz E, Ahbab MA, Barlas N, Çok I (2011) An in vivo assessment of the genotoxic potential of bisphenol A and 4-tert-octylphenol in rats. Arch Toxicol 85:995–1001

    CAS  Google Scholar 

  • Upmeier A, Degen GH, Schuhmacher US, Certa H, Bolt HM (1999) Toxicokinetics of p-tertoctylphenol in female DA/Han rats after single i.v. and oral application. Arch Toxicol 73(4–5):217–222

    CAS  Google Scholar 

  • Vázquez GR, Nostro FL (2014) Changes in hematological parameters of Cichlasoma dimerus (Teleostei, Perciformes) exposed to sublethal concentrations of 4-tert-Octylphenol. Arch Environ Contam Toxicol 66(3):463–469

    Google Scholar 

  • Vione D, Maurino V, Minero C, Pelizzetti E, Harrison MA, Olariu RI, Arsene C (2006) Photochemical reactions in the tropospheric aqueous phase and on particulate matter. Chem Soc Rev 35:441–453

    CAS  Google Scholar 

  • Vione D, Minero C, Housari F, Chiron S (2007) Photoinduced transformation processes of 2,4-dichlorophenol and 2,6-dichlorophenol on nitrate irradiation. Chemosphere 69:1548–1554

    CAS  Google Scholar 

  • Wang L, Ying GG, Chen F, Zhang LJ, Zhao JL, Lai HJ, Chen ZF, Tao R (2012) Monitoring of selected estrogenic compounds and estrogenic activity in surface water and sediment of the Yellow River in China using combined chemical and biological tools. Environ Pollut 165:241–249

    CAS  Google Scholar 

  • Weisbrod AV, Woodburn KB, Koelmans AA, Parkerton TF, Mcelroy AE, Borgå K (2010) Evaluation of bioaccumulation using in vivo laboratory and field studies. Integr Environ Assess Manag 5:598–623

    Google Scholar 

  • Wenzel A, Müller J, Ternes T (2003) Study on endocrine disrupters in drinking water. Final Report (ENV.D.1/ETU/2000/0083). Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), 57392 Schmallenberg, Germany

    Google Scholar 

  • White RS, Jobling SA, Hoare JP, Sumpter JP, Parker MG (1994) Environmentally persistent alkylphenolic compounds are estrogenic. Endocrinology 135:175–182

    CAS  Google Scholar 

  • Wu Y, Yuan H, Jiang X, Wei G, Li C, Dong W (2012) Photocatalytic degradation of 4-tert-octylphenol in a spiral photoreactor system. J Environ Sci 24:1679–1685

    CAS  Google Scholar 

  • Wu M, Wang L, Xu G, Liu N, Tang L, Zheng J, Bu T, Lei B (2013a) Seasonal and spatial distribution of 4-tert-octylphenol, 4-nonylphenol and bisphenol A in the Huangpu River and its tributaries, Shanghai, China. Environ Monit Assess 185:3149–3161

    CAS  Google Scholar 

  • Wu Y, Yuan H, Wei G, Zhang S, Li H, Dong W (2013b) Photodegradation of 4-tert-octylphenol in aqueous solution promoted by Fe (III). Environ Sci Pollut Res Int 20:3–9

    CAS  Google Scholar 

  • Wu M, Pan C, Yang M, Xu B, Lei X, Ma J, Cai L, Chen J (2016) Chemical analysis of fish bile extracts for monitoring endocrine disrupting chemical exposure in water: bisphenol A, alkylphenols, and norethindrone. Environ Toxicol Chem 35(1):182–190

    Google Scholar 

  • Xie Z, Le Calve S, Feigenbrugel V, Preuβ TG, Vinken R, Ebinghaus R, Ruck W (2004) Henry’s law constants measurements of the nonylphenol isomer 4(3,5-dimethyl-3-heptyl)-phenol, tertiary octylphenol and γ-hexachlorocyclohexane between 278 and 298K. Atmos Environ 38:4859–4868

    CAS  Google Scholar 

  • Xie XY, Lü WJ, Chen XG (2013) Binding of the endocrine disruptors 4-tert-octylphenol and 4-nonylphenol to human serum albumin. J Hazard Mater 248– 249:347–354

    Google Scholar 

  • Xu Y, Luo F, Pal A, Gin KYH, Reinhard M (2011) Occurrence of emerging organic contaminants in a tropical urban catchment in Singapore. Chemosphere 83:963–969

    CAS  Google Scholar 

  • Ying GG, Kookana RS (2003) Degradation of five selected endocrine disrupting chemicals in seawater and marine sediment. Environ Sci Technol 37:1256–1260

    CAS  Google Scholar 

  • Zhao JL, Ying GG, Chen F, Liu YS, Wang L, Yang B, Liu S, Tao R (2011) Estrogenic activity profiles and risks in surface waters and sediments of the Pearl River system in South China assessed by chemical analysis and in vitro bioassay. J Environ Monit 13:813–821

    CAS  Google Scholar 

  • Zhong L, Yuan L, Rao Y, Li Z, Zhang X, Liao T, Xu Y, Dai H (2014) Distribution of vitellogenin in zebrafish (Danio rerio) tissues for biomarker analysis. Aquat Toxicol 149:1–7

    CAS  Google Scholar 

  • Zhong M, Yin P, Zhao L (2017) Nonylphenol and octylphenol in riverine waters and surface sediments of the Pearl River Estuaries, South China: occurrence, ecological and human health risks. Water Sci Technol Water Supply 17(4):1070–1079

    CAS  Google Scholar 

  • Zhou JL (2006) Sorption and remobilization behavior of 4-tert-octylphenol in aquatic systems. Environ Sci Technol 40(7):2225–2234

    CAS  Google Scholar 

  • Zhou G-J, Peng F-Q, Yang B, Ying G-G (2013) Cellular responses and bioremoval of nonylphenol and octylphenol in the freshwater green microalga Scenedesmus obliquus. Ecotoxicol Environ Saf 87:10–16

    CAS  Google Scholar 

  • Zoller U (2006) Estuarine and coastal zone marine pollution by the nonionic alkylphenol ethoxylates endocrine disrupters: is there a potential ecotoxicological problem? Environ Int 32:269–272

    CAS  Google Scholar 

  • Zou E, Fingerman M (1999a) Effects of estrogenic agents on chitobiase activities of the epidermis and hepatopancreas of the fiddler crab, Uca pugilator. Ecotoxicol Environ Saf 42:185–190

    CAS  Google Scholar 

  • Zou E, Fingerman M (1999b) Effects of exposure to diethyl phthalate, 4-tert-octylphenol, and 2,4,5-trichlorobiphenyl on activity of chitobiase in the epidermis and hepatopancreas of the fiddler crab, Uca pugilator. Comp Biochem Physiol C Toxicol Pharmacol 122:115–120

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lamidi W. B. Olaniyan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Olaniyan, L.W.B., Okoh, O.O., Mkwetshana, N.T., Okoh, A.I. (2018). Environmental Water Pollution, Endocrine Interference and Ecotoxicity of 4-tert-Octylphenol: A Review. In: de Voogt, P. (eds) Reviews of Environmental Contamination and Toxicology Volume 248. Reviews of Environmental Contamination and Toxicology, vol 248. Springer, Cham. https://doi.org/10.1007/398_2018_20

Download citation

Publish with us

Policies and ethics