Skip to main content

Matching 3-D smooth surfaces with their 2-D projections using 3-D distance maps

  • Conference paper
  • First Online:
Geometric Reasoning for Perception and Action (GRPA 1991)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 708))

Included in the following conference series:

Abstract

The matching of 3-D anatomical surfaces to 2-D X-ray projections is an important problem in Computer and Robot Assisted Surgery. We present a new method for determining the rigid body transformation that describes this match. Our method performs a least squares minimization of the distance between the camera-contour projection lines and the surface. To correctly deal with projection lines that penetrate the surface, we minimize the square of the minimum signed distance along each line (distances inside the object are negative). To quickly and accurately compute distances to the surface, we represent the precomputed distance map using an octree spline whose resolution increases near the surface. The octree allows us to quickly find the minimum distance along each line using best-first search. We present experimental results of 3-D surface to 2-D projection matching, and also show how our method works for 3-D to 3-D surface matching.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Lavallee, L. Brunie, B. Mazier, and P. Cinquin. Matching of medical images for computer and robot assisted surgery. In IEEE EMBS Conference, Orlando, Florida, November 1991.

    Google Scholar 

  2. S. Lavallee and P. Cinquin. Computer assisted medical interventions. In K.H. Hohne, editor, NATO ARW, Vol F60, 3D Imaging in Medicine, pages 301–312, Berlin, June 1990. Springer-Verlag.

    Google Scholar 

  3. S. Leitner, I. Marque, S. Lavallee, and P. Cinquin. Dynamic segmentation: finding the edge with spline snakes. In P.J. Laurent, editor, International Conference on Curves and Surfaces, Chamonix, 1991. Academic Press.

    Google Scholar 

  4. I. Marque. Segmentation d'Images Medicales Tridimensionnelles Basee sur une Modelisation Continue du Volume. PhD thesis, Grenoble University, France, December 1990.

    Google Scholar 

  5. O. Monga, R. Deriche, G. Malandrain, and J. P. Cocquerez. Recursive filtering and edge closing: Two primary tools for 3D edge detection. In First European Conference on Computer Vision (ECCV'90), pages 56–65, Antibes, France, April 1990. Springer-Verlag.

    Google Scholar 

  6. R. Szeliski and S. Lavallée. Octree splines. (in preparation) 1991.

    Google Scholar 

  7. M. Herman, T. Kanade, and S. Kuroe. Incremental acquisition of a three-dimensional scene model from images. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-6(3):331–340, May 1984.

    Google Scholar 

  8. R. Szeliski. Real-time octree generation from rotating objects. Technical Report 90/12, Digital Equipment Corporation, Cambridge Research Lab, December 1990.

    Google Scholar 

  9. R. Szeliski. Shape from rotation. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'91), Maui, Hawaii, June 1991. IEEE Computer Society Press.

    Google Scholar 

  10. M.A. Fischler and R.C. Bolles. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6):381–395, June 1981.

    Google Scholar 

  11. R. Horaud. New methods for matching 3D objects with single perspective views. IEEE PAMI, 9(3):401–412, 1987.

    Google Scholar 

  12. D. Cyganski and Orr J. A. Application of tensor theory to object recognition and orientation determination. IEEE PAMI, 7(6):662–673, 1985.

    Google Scholar 

  13. D. G. Lowe. Perceptual Organization and Visual Recognition. Kluwer Academic Publishers, Boston, Massachusetts, 1985.

    Google Scholar 

  14. M. Dhome, J. T. Lapreste, G. Rives, and M. Richetin. Spatial localization of modelled objects of revolution in monocular pespective vision. In First European Conference on Computer Vision (ECCV'90), pages 475–485, Antibes, France, April 1990. Springer-Verlag.

    Google Scholar 

  15. D. Terzopoulos, A. Witkin, and M. Kass. Constraints on deformable models: Recovering 3D shape and nonrigid motion. Artificial Intelligence, 36:91–123, 1988.

    Google Scholar 

  16. Y. Lamdan, J. T. Schwartz, and H. J. Wolfson. Object recognition by affine invariant matching. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'88), pages 335–344, Ann Arbor, Michigan, June 1988. IEEE Computer Society Press.

    Google Scholar 

  17. D. Forsyth, J. L. Mundy, A. Zisserman, and C. M. Brown. Projectively invariant representations using implicit algebraic curves. In First European Conference on Computer Vision (ECCV'90), pages 427–436, Antibes, France, April 1990. Springer-Verlag.

    Google Scholar 

  18. M. Dhome, M. Richetin, J. T. Lapreste, and G. Rives. Determination of the attitude of 3d objects from a single perspective view. IEEE PAMI, 11(12):1265–1278, 1989.

    Google Scholar 

  19. D. J. Kriegman and J. Ponce. On recognizing and positioning curved 3-D objects from image contours. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-12(12):1127–1137, December 1990.

    Google Scholar 

  20. H. G. Barrow, J. M. Tenenbaum, R. C. Bolles, and H. C. Wolf. Parameteric cor-respondence and chamfer matching: Two new techniques for image matching. In Fifth International Joint Conference on Artificial Intelligence (IJCAI-77), pages 659–663, Cambridge, Massachusetts, August 1977.

    Google Scholar 

  21. N. Ayache. Artificial Vision for Mobile Robots: Stereo Vision and Multisensory Perception. MIT Press, Cambridge, Massachusetts, 1991.

    Google Scholar 

  22. R. Y. Tsai. Synopsis of recent progress on camera calibration for 3D machine vision. In The Robotics Review, pages 147–160. MIT Press, 1989.

    Google Scholar 

  23. H. A. Martins, J. R. Birk, and R. B. Kelley. Camera models based on data from two calibration planes. Computer Vision, Graphics, and Image Processing, 17:173–179, 1981.

    Google Scholar 

  24. K. D. Gremban, C. E. Thorpe, and T. Kanade. Geometric camera calibration using systems of linear equations. In IEEE International Conference on Robotics and Automation, pages 562–567, Philadelphia, Pennsylvania, April 1988. IEEE Computer Society Press.

    Google Scholar 

  25. G. Champleboux. Utilisation des fonctions splines a la mise au point d'un capteur tridimensionnel sans contact: application a la ponction assistee par ordinateur. PhD thesis, Grenoble University, July 1991.

    Google Scholar 

  26. J.C. Latombe. Robot Motion Planning. Kluwer Academic, Norwell,MA, 1991.

    Google Scholar 

  27. P.-E. Danielson. Euclidean distance mapping. Computer Graphics and Image Processing, 14:227–248, 1980.

    Google Scholar 

  28. G. Borgefors. Distance transformations in arbitrary dimensions. Computer Vision, Graphics, and Image Processing, 27:321–345, 1984.

    Google Scholar 

  29. G. Borgefors. Distance transformations in digital images. Computer Vision, Graphics, and Image Processing, 34:344–371, 1986.

    Google Scholar 

  30. H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, Reading, Massachusetts, 1989.

    Google Scholar 

  31. G. Garcia. Contribution a la modelisation d'objets et a la detection de collisions en robotique a l'aide d'arbres octaux. PhD thesis, Nantes University, september 1989.

    Google Scholar 

  32. B.V. Herzen and A.H. Barr. Accurate triangulations of deformed, intersecting surfaces. Computer Graphics, 21(4):103–110, 1987.

    Google Scholar 

  33. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, Cambridge, England, 1986.

    Google Scholar 

  34. P. J. Huber. Robust Statistics. John Wiley & Sons, New York, New York, 1981.

    Google Scholar 

  35. C. A. Pelizzari, G. T. Y. Chen, D. R. Spelbring, R. R. Weichselbaum, and C. T. Chen. Accurate 3D registration of CT, PET and/or MR images of the brain. J. Computer Assisted Tomography, 13(1):20–26, 1989.

    Google Scholar 

  36. N. Ayache, J. D. Boissonnat, L. Cohen, B. Geiger, J. Levy-Vehel, O. Monga, and P. Sander. Steps toward the automatic interpretation of 3d images. In K.H. Hohne, editor, NATO ARW, Vol F60, 3D Imaging in Medicine, pages 107–120, Berlin, June 1990. Springer-Verlag.

    Google Scholar 

  37. G. M. Radack and N. I. Badler. Local matching of surfaces using a boundary-centered radial decomposition. Computer Graphics, and Image Processing, 45:380–396, 1989.

    Google Scholar 

  38. A. Gamboa-Aldeco, L. Fellingham, and G. Chen. Correlation of 3d surfaces from multiple modalities in medical imaging. In SPIE Vol. 626, Medecine XIV/PACS IV, pages 467–473, 1986.

    Google Scholar 

  39. S. Lavallee. Geste Medico-Chirurgicaux Assistes par Ordinateur: Application a la Neurochirurgie Stereotaxique. PhD thesis, Grenoble University, France, December 1989.

    Google Scholar 

  40. Y.L. Kergosien. Projection of smooth surfaces: stable primitives. In MARI-COGNITIVA, pages 447–454, Paris, France, 1987.

    Google Scholar 

  41. J. Barnes and P. Hut. A hierarchical o(n log n) force-calculation algorithm. Nature, 324:446–449, 4 December 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Christian Laugier

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lavallée, S., Szeliski, R., Brunie, L. (1993). Matching 3-D smooth surfaces with their 2-D projections using 3-D distance maps. In: Laugier, C. (eds) Geometric Reasoning for Perception and Action. GRPA 1991. Lecture Notes in Computer Science, vol 708. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-57132-9_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-57132-9_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57132-2

  • Online ISBN: 978-3-540-47913-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics