Skip to main content

Complexity issues in discrete neurocomputing

  • Part II Invited Lectures
  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 464))

Abstract

An overview of the basic results in complexity theory of discrete neural computations is presented. Especially, the computational power and efficiency of single neurons, neural circuits, symmetric neural networks (Hopfield model), and of Boltzmann machines is investigated and characterized. Corresponding intractability results are mentioned as well. The evidence is presented why discrete neural networks (inclusively Boltzmann machines) are not to be expected to solve intractable problems more efficiently than other conventional models of computing.

This work was finished while the author was visiting the Department of Computer Science, University of Saarland, West Germany (Spring 1990). During this stay the research was partially supported by the ESPRIT II Basic Research Action Program of the EC under contract No. 3075 (Project Alcom).

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adlemann, L.: Two Theorems on Random Polynomial Time, Proc. 19-th FOCS, Washington D. C., 1978, pp. 75–83

    Google Scholar 

  2. Ackley, D. N. — Hinton, G. E. — Sejnowski, T.I.: A Learning Algorithm for Boltzmann Machines. Cognitive Science 9, 1985, pp. 147–169

    Article  Google Scholar 

  3. Barahona, F.: On the Computational Complexity of Ising Spin Glass Models. J. Phys. A. 15, 1982, pp. 3241–3253

    Google Scholar 

  4. Bruck, J. — Goodman, J. W.: A Generalized Convergence Theorem for Neural Networks and Its Application in Combinatorial Optimization. Proc. IEEE First International Conf. on Neural Networks, Vol. 3, 1987, pp.649–656

    Google Scholar 

  5. Chandra, A. K. — Kozen, D. C. — Stockmeyer, L. I.: Alternation. JACM 28, 1981, pp. 114–133

    Article  Google Scholar 

  6. Chandra, A. K. — Stockmeyer, L. I. — Vishkin, U.: Constant Depth Reducibility. SIAM J. Comput. Vol. 15, No. 3, 1984, pp. 423–432

    Google Scholar 

  7. Egecioglu, O. — Smith, T.R. — Moody, I.: Computable Functions and Complexity in neural networks. Tech. Rep. ITP-124, University of California, Santa Barbara, 1986

    Google Scholar 

  8. Farhat, N. H. — Psaltis, D. — Prata, A. — Paek, E.: Optical Implementation of the Hopfield Model. Applied Optics, 24, 1985, pp. 1469–1475

    Google Scholar 

  9. Faigle, U. — Schrader, R.: On the Convergence Of Stationary Distributions in Simulated Annealing Algorithms. Inf. Proc. Letters, 27, 1988, pp. 189–194

    Google Scholar 

  10. Feldman, J. A.: Energy and the Behavior of Connectionist Models. Tech. Rep. TR-155, University of Rochester, Nov. 1985

    Google Scholar 

  11. Garey, M. R. — Johnson, D. S.: Computers and Intractability. A Guide to the Theory of NP-Completeness. Freeman and Co., San Francisco, 1979

    Google Scholar 

  12. Hopfield, J. J.: Neural Networks and Physical Systems with Emergent Collective Computational Abilities. Proc. Natl. Acad. Sci. USA 79, 1982, pp. 2554–2558

    PubMed  Google Scholar 

  13. Hopfield, J. J.: Neurons with Graded Response Have Collective Computational Properties Like Those of Two-state Neurons. Proc. Natl. Acad. Sci. USA, 1984, pp. 3088–3092

    Google Scholar 

  14. Hopfield, J. J.: The Effectiveness of Neural Computing. Proc. IFIP'89, North-Holland, 1989, pp. 503–507

    Google Scholar 

  15. Hopfield, J. J. — Tank, D. W.: 'Neural’ Computations of Decisions in Optimization Problems. Biol. Cybern. 52, 1985, pp. 141–152

    PubMed  Google Scholar 

  16. Hopfield, J. J. — Tank, D. W.: Computing with Neural Circuits: A Model. Science 233, 1986, pp.625–633

    PubMed  Google Scholar 

  17. Johnson, J. l.: A Neural Network Approach to the 3-Satisfiability Problem. J. of Parall. and Distrib. Comput. 6, 1989, pp. 435–449

    Google Scholar 

  18. Kirkpatrick, S. — Gellat, C. D., Jr. — Vecchi, M. P.: Optimization by Simulated Annealing. Science, 220, No. 4598, 1983

    Google Scholar 

  19. Korst,. J. H. M. — Arts, E. H. L.: Combinatorial Optimization on a Boltzmann Machine. J. of Parall. and Distrib. Comput. 6, 1989, pp. 331–357

    Google Scholar 

  20. Metropolis, N. — Rosenbluth, A. — Rosenbluth, M. — Teller, A. — Teller, E.: J. Chem. Phys., 21, 1087, 1953

    Google Scholar 

  21. Minsky, M.: Computation. Finite and Infinite Machines. Prentice Hall, Englewood Cliffs, NJ, 1967

    Google Scholar 

  22. Muroga, S.: Threshold Logic and Its Applications. Wiley-Interscience, New York, 1971

    Google Scholar 

  23. Minsky, M. — Papert, S.: Perceptrons. An Introduction to Computational Geometry. The MIT Press, Cambridge, Mass., 1969

    Google Scholar 

  24. Muroga, S. — Tsubi, T. — Baugh, Ch. R.: Enumeration of Threshold Functions of Eight Variables. IEEE Trans. on Comp., C-19, No. 9, 1970, pp. 818–825

    Google Scholar 

  25. Parberry, I.: A Primer on the Complexity Theory of Neural Networks. Research Report CS-88-38, Dept. of Comp. Sci., The Pennsylvania state university, October 1988

    Google Scholar 

  26. Parberry, I. — Schnitger, G.: Parallel Computation with Threshold Functions. JCSS 36, 1988, pp. 278–302

    Google Scholar 

  27. Parberry, I. — Schnitger, G.: Relating Boltzmann Machines to Conventional models of Computations. Neural Networks, 2, 1989

    Google Scholar 

  28. Reif, J. H. — Tate, S. R.: On Threshold Circuits and Polynomial Computation. Technical Report, Dept. of Comp. Sci., Duke University, 1988

    Google Scholar 

  29. Robson, J. M.: Linear Size Formulas for Non-deterministic Single Tape Computations. Proc. 11-th Australian Comp. Sci. Conference, Brisbane, Feb. 3–5, 1988

    Google Scholar 

  30. van Emde Boas, P.: Machine Models and Simulations. ITLI Prepublication Series of Computation and Complexity Theory CT-88-95, University of Amsterdam, 1988

    Google Scholar 

  31. Wiedermann, J.: On the Computational Power of Neural Networks and Related Computational Systems. Technical Report OPS-9/1988, Department of Programming Systems, VUSEI-AR, Bratislava, June 1988 (in Slovak), also in Proc. SOFSEM'88, VUSEI-AR Bratislava, November 1988, pp. 73–78

    Google Scholar 

  32. Wiedermann, J.: On the Computational Efficiency of Symmetric Neural Networks. Proc. 14-th Symp. on Math. Found. of Comp. Sci., MFCS'89, LNCS Vol. 379, Springer Verlag, Berlin, 1989, pp. 545–552

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jürgen Dassow Jozef Kelemen

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wiedermann, J. (1990). Complexity issues in discrete neurocomputing. In: Dassow, J., Kelemen, J. (eds) Aspects and Prospects of Theoretical Computer Science. IMYCS 1990. Lecture Notes in Computer Science, vol 464. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-53414-8_32

Download citation

  • DOI: https://doi.org/10.1007/3-540-53414-8_32

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53414-3

  • Online ISBN: 978-3-540-46869-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics