Skip to main content

The Computer-Aided Discovery of Scientific Knowledge

  • Conference paper
  • First Online:
Discovey Science (DS 1998)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1532))

Included in the following conference series:

Abstract

In this paper, we review AI research on computational discovery and its recent application to the discovery of new scientific knowledge. We characterize five historical stages of the scientific discovery process, which we use as an organizational framework in describing applications. We also identify five distinct steps during which developers or users can influence the behavior of a computational discovery system. Rather than criticizing such intervention, as done in the past, we recommend it as the preferred approach to using discovery software. As evidence for the advantages of such human-computer cooperation, we report seven examples of novel, computer-aided discoveries that have appeared in the scientific literature, along with the role that humans played in each case. We close by recommending that future systems provide more explicit support for human intervention in the discovery process

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bruk, L. G., Gorodskii, S. N., Zeigarnik, A. V., Valdés-Pérez, R. E., & Temkin, O. N. (1998). Oxidative carbonylation of phenylacetylene catalyzed by Pd(II) and Cu(I): Experimental tests of forty-one computer-generated mechanistic hypotheses. Journal of Molecular Catalysis A: Chemical, 130, 29–40.

    Article  Google Scholar 

  2. Cheeseman, P., Freeman, D., Kelly, J., Self, M., Stutz, J., & Taylor, W. (1988). Autoclass: A Bayesian classificiation system. Proceedings of the Fifth International Conference on Machine Learning (pp. 54–64). Ann Arbor, MI: Morgan Kaufmann.

    Google Scholar 

  3. Cheeseman, P., Goebel, J., Self, M., Stutz, M., Volk, K., Taylor, W., & Walker, H. (1989). Automatic classification of the spectra from the infrared astronomical satellite (IRAS) (Reference Publication 1217). Washington, DC: National Aeronautics and Space Administration.

    Google Scholar 

  4. Cheeseman, P., & Stutz, J. (1996). Bayesian classification (AutoClass): Theory and results. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, & R. Uthurusamy (Eds.), Advances in knowledge discovery and data mining. Cambridge, MA: MIT Press.

    Google Scholar 

  5. Chung, F. (1988). The average distance is not more than the independence number. Journal of Graph Theory, 12, 229–235.

    Article  MATH  MathSciNet  Google Scholar 

  6. Fajtlowicz, S. (1988). On conjectures of Graffiti. Discrete Mathematics, 72, 113–118.

    Article  MathSciNet  Google Scholar 

  7. Fayyad, U., Haussler, D., & Stolorz, P. (1996). KDD for science data analysis: Issues and examples. Proceedings of the Second International Conference of Knowledge Discovery and Data Mining (pp. 50–56). Portland, OR: AAAI Press.

    Google Scholar 

  8. Finn, P., Muggleton, S., Page, D., & Srinivasan, A. (1998). Pharmacophore discovery using the inductive logic programming system Progol. Machine Learning, 30, 241–270.

    Article  Google Scholar 

  9. Gillies, D. (1996). Artificial intelligence and scientific method. Oxford: Oxford Univerity Press.

    Google Scholar 

  10. Goebel, J., Volk, K., Walker, H., Gerbault, F., Cheeseman, P., Self, M., Stutz, J., & Taylor, W. (1989). A Bayesian classification of the IRAS LRS Atlas. Astronomy and Astrophysics, 222, L5–L8.

    Google Scholar 

  11. Hunter, L. (1993). (Ed.). Artificial intelligence and molecular biology. Cambridge, MA: MIT Press.

    Google Scholar 

  12. Jones, R. (1986). Generating predictions to aid the scientific discovery process. Proceedings of the Fifth National Conference on Artificial Intelligence (pp. 513–517). Philadelphia: Morgan Kaufmann.

    Google Scholar 

  13. King, R. D., Muggleton, S. H., Srinivasan, A., & Sternberg, M. E. J. (1996). Structure-activity relationships derived by machine learning: The use of atoms and their bond connectives to predict mutagenicity by inductive logic programming. Proceedings of the National Academy of Sciences, 93, 438–442.

    Article  Google Scholar 

  14. King, R. D., & Srinivasan, A. (1996). Prediction of rodent carcinogenicity bioassays from molecular structure using inductive logic programming. Environmental Health Perspectives, 104 (Supplement 5), 1031–1040.

    Article  Google Scholar 

  15. Kocabas, S. (1991). Conflict resolution as discovery in particle physics. Machine Learning, 6, 277–309.

    Google Scholar 

  16. Kocabas, S., & Langley, P. (in press). Generating process explanations in nuclear astrophysics. Proceedings of the ECAI-98 Workshop on Machine Discovery. Brighton, England.

    Google Scholar 

  17. Kulkarni, D., & Simon, H. A. (1990). Experimentation in machine discovery. In J. Shrager & P. Langley (Eds.), Computational models of scientific discovery and theory formation. San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  18. Langley, P. (1981). Data-driven discovery of physical laws. Cognitive Science, 5, 31–54.

    Article  Google Scholar 

  19. Langley, P., & Simon, H. A. (1995). Applications of machine learning and rule induction. Communications of the ACM, 38, November, 55–64.

    Google Scholar 

  20. Langley, P., Simon, H. A., Bradshaw, G. L., & Żytkow, J. M. (1987). Scientific discovery: Computational explorations of the creative processes. Cambridge, MA: MIT Press.

    Google Scholar 

  21. Lee, Y., Buchanan, B. G., & Aronis, J. M. (1998). Knowledge-based learning in exploratory science: Learning rules to predict rodent carcinogenicity. Machine Learning, 30, 217–240.

    Article  Google Scholar 

  22. Lee, Y., Buchanan, B. G., Mattison, D. R., Klopman, G., & Rosenkranz, H. S. (1995). Learning rules to predict rodent carcinogenicity of non-genotoxic chemicals. Mutation Research, 328, 127–149.

    Google Scholar 

  23. Lee, Y., Buchanan, B. G., & Rosenkranz, H. S. (1996). Carcinogenicity predictions for a group of 30 chemicals undergoing rodent cancer bioassays based on rules derived from subchronic organ toxicities. Environmental Health Perspectives, 104(Supplement 5), 1059–1063.

    Article  Google Scholar 

  24. Lenat, D.B. (1977). Automated theory formation in mathematics. Proceedings of the Fifth International Joint Conference on Artificial Intelligence (pp. 833–842). Cambridge, MA: Morgan Kaufmann.

    Google Scholar 

  25. Michalski, R. S., & Stepp, R. (1983). Learning from observation: Conceptual clustering. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning: An artificial intelligence approach. San Francisco: Morgan Kaufmann.

    Google Scholar 

  26. Mitchell, F., Sleeman, D., Duffy, J. A., Ingram, M. D., & Young, R. W. (1997). Optical basicity of metallurgical slags: A new computer-based system for data visualisation and analysis. Ironmaking and Steelmaking, 24, 306–320.

    Google Scholar 

  27. Nordhausen, B., & Langley, P. (1993). An integrated framework for empirical discovery. Machine Learning, 12, 17–47.

    Google Scholar 

  28. Pericliev, V., & Valdés-Pérez, R. E. (in press). Automatic componential analysis of kinship semantics with a proposed structural solution to the problem of multiple models. Anthropological Linguistics.

    Google Scholar 

  29. Rose, D., & Langley, P. (1986). Chemical discovery as belief revision. Machine Learning, 1, 423–451.

    Google Scholar 

  30. Shrager, J., & Langley, P. (Eds.) (1990). Computational models of scientific discovery and theory formation. San Francisco: Morgan Kaufmann.

    Google Scholar 

  31. Todorovski, L., Džeroski, S., & Kompare, B. (in press). Modeling and prediction of phytoplankton growth with equation discovery. Ecological Modelling.

    Google Scholar 

  32. Valdés-Pérez, R.E. (1994). Human/computer interactive elucidation of reaction mechanisms: Application to catalyzed hydrogenolysis of ethane. Catalysis Letters, 28, 79–87.

    Article  Google Scholar 

  33. Valdés-Pérez, R.E. (1995). Machine discovery in chemistry: New results. Artificial Intelligence, 74, 191–201.

    Article  Google Scholar 

  34. Valdés-Pérez, R.E. (1998). Why some programs do knowledge discovery well: Experiences from computational scientific discovery. Unpublished manuscript, School of Computer Science, Carnegie Mellon University, Pittsburgh,PA.

    Google Scholar 

  35. Zeigarnik, A. V., Valdés-Pérez, R. E., Temkin, O. N., Bruk, L. G., & Shalgunov, S. I. (1997). Computer-aided mechanism elucidation of acetylene hydrocarboxylation to acrylic acid based on a novel union of empirical and formal methods. Organometallics, 16, 3114–3127.

    Article  Google Scholar 

  36. Żytkow, J.M. (1996). Incremental discovery of hidden structure: Applications in theory of elementary particles. Proceedings of the Thirteenth National Conference on Artificial Intelligence (pp. 750–756). Portland, OR: AAAI Press.

    Google Scholar 

  37. Żytkow, J. M., & Simon, H. A. (1986). A theory of historical discovery: The construction of componential models. Machine Learning, 1, 107–137.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Langley, P. (1998). The Computer-Aided Discovery of Scientific Knowledge. In: Arikawa, S., Motoda, H. (eds) Discovey Science. DS 1998. Lecture Notes in Computer Science(), vol 1532. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-49292-5_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-49292-5_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65390-5

  • Online ISBN: 978-3-540-49292-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics