Skip to main content

Extracting Explicit and Implict Information from Complex Visualizations

  • Conference paper
  • First Online:
Diagrammatic Representation and Inference (Diagrams 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2317))

Included in the following conference series:

Abstract

How do experienced users extract information from a complex visualization? We examine this question by presenting experienced weather forecasters with visualizations that did not show the needed information explicitly and examining their eye movements. We replicated Carpenter & Shah (1998) when the information was explicitly available on the visualization. However, when the information was not explicitly available, we found that forecasters used spatial reasoning in the form of spatial transformations. We also found a strong imagerial component for constructing meteorological information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker, L. M., & Dunbar, K. (2000). Experimental design heuristics for scientific discovery: the use of “baseline” and “known standard” controls. International Journal of Human Computer Studies, 53 (3), 335–349.

    Article  MATH  Google Scholar 

  • Bertin, J. (1983). Semiology of graphs. Madison, WI: University of Wisconsin Press.

    Google Scholar 

  • Carpenter, P. A., & Shah, P. (1998). A model of the perceptual and conceptual processes in graph comprehension. Joural of Experimental Psychology: Applied, 4 (2), 75–100.

    Article  Google Scholar 

  • Cleveland, W. S., & McGill, R. (1984). Graphical perception: theory, experimentation, and application to the development of graphical method. Journal of the American Statistical Association, 79, 531–553.

    Article  MathSciNet  Google Scholar 

  • Cleveland, W. S., & McGill, R. (1986). An experiment in graphical perception. International Journal of Man-Machine Studies, 25, 491–500.

    Article  Google Scholar 

  • Dunbar, K. (1995). How scientists really reason: Scientific reasoning in real-world laboratories. In R. J. Sternberg, & J. E. Davidson (Eds.), The nature of insight, (pp. 365–395). Cambridge, MA: MIT Press.

    Google Scholar 

  • Dunbar, K. (1997). How scientists think: Online creativity and conceptual change in science. In T. B. Ward, S. M. Smith, & S. Vaid (Eds.), Creative thought: An Investigation of Conceptual Structures and Processes, (pp. 461–493). Washington, DC: APA Press.

    Chapter  Google Scholar 

  • Gillan, D. J., Wickens, C. D., Hollands, J. G., & Carswell, C. M. (1998). Guidelines for presenting quantitative data in HFES publications. Human Factors, 40 (1), 28–41.

    Article  Google Scholar 

  • Hegarty, M. (1992). Mental animation: Inferring motion from static displays of mechanical systems. Journal of Experimental Psychology: Learning, Memory and Cognition, 18 (5), 1084–1102.

    Article  Google Scholar 

  • Hegarty, M., & Sims, V. K. (1994). Individual differences in mental animation during mechanical reasoning. Memory and Cognition, 22 (4), 411–430.

    Google Scholar 

  • Kosslyn, S. M. (1989). Understanding charts and graphs. Applied Cognitive Psychology, 3, 185-226.

    Google Scholar 

  • Kosslyn, S. M., Sukel, K. E., & Bly, B. M. (1999). Squinting with the mind’s eye: Effects of stimulus resolution on imaginal and perceptual comparisons. Memory and Cognition, 27 (2), 276–287.

    Google Scholar 

  • Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11, 65–99.

    Article  Google Scholar 

  • Lohse, G. L. (1993). A cognitive model for understanding graphical perception. Human Computer Interaction, 8, 353–388.

    Article  Google Scholar 

  • Lowe, R. K. (1999). Extracting information from an animation during complex visual learning. European Journal of Psychology of Education, 14 (2), 225–244.

    Article  Google Scholar 

  • Narayanan, N. H., & Hegarty, M. (1998). On designing comprehensible interactive hypermedia manuals. International Journal of Human-Computer Studies, 48, 267–301.

    Article  Google Scholar 

  • Peebles, D., & Cheng, P. C.-H. (2001a). Extending task analytic models of graphbased reasoning: A cognitive model of problem solving with cartesian graphs in ACT-R/PM. In Proceedings of the 4th International Conference on Cognitive Modeling, (pp. 169–174). Mahwah, NJ: Lawrence Erlbaum Association.

    Google Scholar 

  • Peebles, D., & Cheng, P. C.-H. (2001b). Graph-based reasoning: From task analysis to cognitive explanation. In Proceedings of the Twenty Third Annual Conference of the Cognitive Science Society, (pp. 762–773). Hillsdale, NJ: Lawrence Erlbaum Association.

    Google Scholar 

  • Pinker, S. (1990). A theory of graph comprehension. In R. Freedle (Ed.), Artificial intelligence and the future of testing, (pp. 73–126). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

    Google Scholar 

  • Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171, 701–703.

    Article  Google Scholar 

  • Tabachneck-Schijf, H. J. M., Leonardo, A. M., & Simon, H. A. (1997). CaMeRa: a computational model of multiple representations. Cognitive Science, 21 (3), 305–350.

    Article  Google Scholar 

  • Tan, J. K. H., & Benbasat, I. (1990). Processing of graphical information: A decomposition taxonomy to match data extraction tasks and graphical representations. Information Systems Research, 1 (4), 416–438.

    Google Scholar 

  • Trafton, J. G., Kirschenbaum, S. S., Tsui, T. L., Miyamoto, R. T., Ballas, J. A., & Raymond, P. D. (2000). Turning pictures into numbers: Extracting and generating information from complex visualizations. International Journal of Human Computer Studies, 53 (5), 827–850.

    Article  MATH  Google Scholar 

  • Trafton, J. G., Trickett, S. B., & Mintz, F. E. (in press). Connecting internal and external representations: Spatial Transformations of scientific visualizations. Foundations of Science.

    Google Scholar 

  • Trafton, J. G., & Trickett, S. B. (2001). A new model of graph and visualization usage. In J. D. Moore, & K. Stenning (Eds.), Proceedings of the Twenty Third Annual Conference of the Cognitive Science Society, (pp. 1048–1053). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Trickett, S. B., Fu, W., Schunn, C. D., & Trafton, J. G. (2000). From dipsy-doodles to streaming motions: Changes in representation in the analysis of visual scientific data. In Proceedings of the Twenty Second Annual Conference of the Cognitive Science Society, (pp. 959–964). Hillsdal, NJ: LEA.

    Google Scholar 

  • Trickett, S. B., Trafton, J. G., Schunn, C. D., & Harrison, A. (2001). “That’s odd!“ How scientists respond to anomalous data. In J. D. Moore, & K. Stenning (Eds.), Proceedings of the Twenty Third Annual Conference of the Cognitive Science Society, (pp. 1054–1059). Mahwah, NJ: LEA.

    Google Scholar 

  • Tufte, E. R. (1983). The visual display of quantitative information. Cheshire, CN: Graphics Press.

    Google Scholar 

  • Tufte, E. R. (1990). Envisioning information. Cheshire, CN: Graphics Press.

    Google Scholar 

  • Tufte, E. R. (1997). Visual Explanations. Cheshire, CN: Graphics Press.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Trafton, J.G., Marshall, S., Mintz, F., Trickett, S.B. (2002). Extracting Explicit and Implict Information from Complex Visualizations. In: Hegarty, M., Meyer, B., Narayanan, N.H. (eds) Diagrammatic Representation and Inference. Diagrams 2002. Lecture Notes in Computer Science(), vol 2317. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46037-3_22

Download citation

  • DOI: https://doi.org/10.1007/3-540-46037-3_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43561-7

  • Online ISBN: 978-3-540-46037-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics