Skip to main content

Modelling, Control and Perception for an Autonomous Robotic Airship

  • Conference paper
  • First Online:
Book cover Sensor Based Intelligent Robots

Abstract

Robotic unmanned aerial vehicles have an enormous potential as observation and data-gathering platforms for a wide variety of applications. These applications include environmental and biodiversity research and monitoring, urban planning and traffic control, inspection of man-made structures, mineral and archaeological prospecting, surveillance and law enforcement, communications, and many others. Robotic airships, in particular, are of great interest as observation platforms, due to their potential for extended mission times, low platform vibration characteristics, and hovering capability. In this paper we provide an overview of Project AURORA (Autonomous Unmanned Remote Monitoring Robotic Airship), a research effort that focusses on the development of the technologies required for substantially autonomous robotic airships. We discuss airship modelling and control, autonomous navigation, and sensor-based flight control. We also present the hardware and software architectures developed for the airship. Additionally, we discuss our current research in airborne perception and monitoring, including mission-specific target acquisition, discrimination and identification tasks. The paper also presents experimental results from our work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Airspeed Airships. The AS800 Airship. http://airship.demon.co.uk/airspeed.html, February 1998.

  2. J. R. Azinheira, E. C. de Paiva, J. J. G. Ramos, and S. S. Bueno. Mission Path Following for an Autonomous Unmanned Airship. In Proceedings of the 2000 IEEE International Conference on Robotics and Automation, Detroit, MI, April 2000. IEEE.

    Google Scholar 

  3. J. R. Azinheira, H. V. Oliveira, and B. F. Rocha. Aerodynamic measurement system for the Project AURORA airship: Calibration Report and User Manual. Research report, Mechanical Engineering Institute, Instituto Superior Técnico, Lisbon, Portugal, 1999.

    Google Scholar 

  4. J. R. Azinheira, E. C. Paiva, J. J. G. Ramos, and S. S. Bueno. Mission Path Following for an Autonomous Unmanned Airship. In Proceedings of the 2000 IEEE International Conference on Robotics and Automation, San Francisco, USA, April 2000. IEEE.

    Google Scholar 

  5. J. H. Boschma. The development progress of the U.S. Army’s SAA LITE Unmanned Robot Airship. In Proceedings of the AIAA Lighter-Than-Air Systems Technology Conference. AIAA, September 1993.

    Google Scholar 

  6. A. Botto, J. R. Azinheira, and J. S. Costa. A comparison between robust and predictive autonomous guidance controllers. In Proceedings of the Eighteenth IASTED International Conference, Innsbruck, Austria, February 1999. IASTED.

    Google Scholar 

  7. E. C. De Paiva, S. S. Bueno, S. B. V. Gomes, and M. Bergerman. A Control System Development Environment for the Aurora Semi-Autonomous Robotic Airship. In Proceedings of the 1999 IEEE International Conference on Robotics and Automation, Detroit, MI, May 1999. IEEE.

    Google Scholar 

  8. J. C. Doyle, B. Francis, and A. Tannenbaum. Feedback Control Theory. Macmillan Publishing Company, New York, 1992.

    Google Scholar 

  9. A. Elfes. Autonomous Underwater Vehicle (AUV) Architecture. IBM T. J. Watson Research Center Internal Report, 1990.

    Google Scholar 

  10. A. Elfes. Dynamic Control of Robot Perception Using Stochastic Spatial Models. In G. Schmidt, editor, Information Processing in Mobile Robots, Berlin, July 1991. Springer-Verlag.

    Google Scholar 

  11. A. Elfes. Multi-Source Spatial Fusion Using Bayesian Reasoning. In M. A. Abidi and R. C. Gonzalez, editors, Data Fusion in Robotics and Machine Intelligence, San Diego, CA, 1992. Academic Press.

    Google Scholar 

  12. A. Elfes. Robot Navigation: Integrating Perception, Environment Constraints and Task Execution Within a Probabilistic Framework. In L. Dorst, M. van Lambalgen, and F. Voorbraak, editors, Reasoning With Uncertainty in Robotics, volume 1093 of Lecture Notes in Artificial Intelligence, Berlin, Germany, 1996. Springer-Verlag.

    Google Scholar 

  13. A. Elfes. Incorporating Spatial Representations at Multiple Levels of Abstraction in a Replicated Multilayered Architecture for Robot Control. In R. C. Bolles, H. Bunke, and H. Noltemeier, editors, Intelligent Robots: Sensing, Modelling, and Planning, New York, 1997. World Scientific Publishers. Invited paper, 1996 International Dagstuhl Seminar on Intelligent Robots, Schloβ Dagstuhl, Germany.

    Google Scholar 

  14. A. Elfes, M. Bergerman, and J. R. H. Carvalho. Dynamic Target Identification by an Aerial Robotic Vehicle. In G. Barato. and H. Neumann, editors, Dynamic Perception, Ulm, Germany, September 2000. AKA, Berlin.

    Google Scholar 

  15. A. Elfes, M. Bergerman, and J. R. H. Carvalho. Towards Dynamic Target Identification Using Optimal Design of Experiments. In Proceedings of the 2000 IEEE International Conference on Robotics and Automation, San Francisco, CA, April 2000. IEEE.

    Google Scholar 

  16. A. Elfes, S. S. Bueno, M. Bergerman, and J. J. G. Ramos. A Semi-Autonomous Robotic Airship for Environmental Monitoring Missions. In Proceedings of the 1998 IEEE International Conference on Robotics and Automation, Leuven, Belgium, May 1998. IEEE.

    Google Scholar 

  17. A. Elfes, M. F. M. Campos, M. Bergerman, S. S. Bueno, and G. W. Podnar. A Robotic Unmanned Aerial Vehicle for Environmental Research and Monitoring. In Proceedings of the First Scientific Conference on the Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA), Belém, Pará, Brazil, June 2000. LBA Central Office, CPTEC/INPE, Rod. Presidente Dutra, km 40, 12630-000 Cachoeira Paulista, SP, Brazil.

    Google Scholar 

  18. V. V. Fedorov. Theory of Optimal Experiments. Academic Press, New York, 1972.

    Google Scholar 

  19. K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press, New York, 2nd edition edition, 1990.

    MATH  Google Scholar 

  20. S. B. V. Gomes. An Investigation of the Flight Dynamics of Airships with Application to the YEZ-2A. PhD thesis, College of Aeronautics, Cranfield University, 1990.

    Google Scholar 

  21. S. B. V. Gomes and J. J. G. Ramos. Airship Dynamic Modeling for Autonomous Operation. In Proceedings of the 1998 IEEE International Conference on Robotics and Automation, Leuven, Belgium, May 1998. IEEE.

    Google Scholar 

  22. B. G. Kaempf and K. H. Well. Attitude Control System for a Remotely-Controlled Airship. In Proceedings of the 11th AIAA Lighter-Than-Air Systems Technology Conference, Clearwater, USA, 1995. AIAA.

    Google Scholar 

  23. T. Kämpke and A. Elfes. Markov Sensing and Superresolution Images. In Proceedings of the 10th INFORMS Applied Probability Conference (AP99), Ulm, Germany, July 1999.

    Google Scholar 

  24. P. Lourtie, J. R. Azinheira, J. P. Rente, and P. Felício. ARMOR Project-Autonomous Flight Capability. In Proceedings of the AGARD FVP95 Specialist Meeting: Design and Operation of Unmanned Air Vehicles, Turkey, October 1995. AGARD.

    Google Scholar 

  25. E. Mowforth. An Introduction to the Airship. The Airship Association Ltd., United Kingdom, 1991.

    Google Scholar 

  26. K. Munson. Jane’s Unmanned Aerial Vehicles and Targets. Jane’s Information Group Limited, Surrey, UK, 1996.

    Google Scholar 

  27. NASA. Theseus Project. http://www.hq.nasa.gov/o.ce/mtpe/Theseus.html, October 1997.

  28. O. J. Netherclift. Airships Today and Tomorrow. The Airship Association Ltd., United Kingdom, 1993.

    Google Scholar 

  29. E. C. Paiva, S. S. Bueno, S. B. V. Gomes, J. J. G. Ramos, and M. Bergerman. Control System Development Environment for AURORA’s Semi-Autonomous Robotic Airship. In Proceedings of the 1999 IEEE International Conference on Robotics and Automation, Detroit, USA, May 1999. IEEE.

    Google Scholar 

  30. E. C. Paiva, A. Elfes, and M. Bergerman. Robust Control of an Unmanned Airship for Cooperative Robotic Applications. In Proceedings of the 1999 International Workshop on Dynamic Problems in Mechanics and Mechatronics (EURODINAME’ 99), Schloβ Reisensburg, Ulm, Germany, July 1999. Springer-Verlag.

    Google Scholar 

  31. J. J. G. Ramos, S. S. Maeta, M. Bergerman, S. S. Bueno, A. Bruciapaglia, and L. G. B. Mirisola. Development of a VRML/JAVA unmaned airship simulation environment. In Proceedings of the 1999 International Conference on Intelligent Robots and Systems (IROS’99), Kyongju, South Korea, October 1999. IEEE/RSJ.

    Google Scholar 

  32. J. J. G. Ramos and O. Neves. Environment for unmanned helicopter control system development: application examples. In Proceedings of the 4th IEEE Conference on Control Applications, Albany, NY, September 1995. IEEE.

    Google Scholar 

  33. J. J. G. Ramos, E. C. Paiva, J. R. Azinheira, S. S. Bueno, S. M. Maeta, L. G. B. Mirisola, M. Bergerman, B. G. Faria, and A. Elfes. Flight Experiment with an Autonomous Unmanned Robotic Airship. In Proceedings of the 2001 International Conference on Field and Service Robotics (FSR 2001), Helsinki, Finland, June 2001. IEEE.

    Google Scholar 

  34. J. J. G. Ramos, E. C. Paiva, S. M. Maeta, L. G. B. Mirisola, J. R. Azinheira, B. G. Faria, S. S. Bueno, M. Bergerman, C. S. Pereira, C. T. Fujiwara, J. P. Batistela, R. R. Frazzato, R. P. Peixoto, G. C. Martins, and A. Elfes. Project AURORA: A Status Report. In Proceedings of the 3rd International Airship Convention and Exhibition (IACE 2000), Friedrichshafen, Germany, July 2000. The Airship Association, UK.

    Google Scholar 

  35. R. Simmons. Structured control for autonomous robots. IEEE Transactions on Robotics and Automation, 10(1), 1994.

    Google Scholar 

  36. N. Wells. Practical operation of remotely piloted airships. In Proceedings of the 11th AIAA Lighter-than-Air Systems Technology Conference, Clearwater Beach, FL, May 1995. AIAA.

    Google Scholar 

  37. G. Winkler. Image Analysis, Random Fields and Dynamic Monte Carlo Methods. Springer-Verlag, Berlin, 1995.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Elfes, A. et al. (2002). Modelling, Control and Perception for an Autonomous Robotic Airship. In: Hager, G.D., Christensen, H.I., Bunke, H., Klein, R. (eds) Sensor Based Intelligent Robots. Lecture Notes in Computer Science, vol 2238. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45993-6_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-45993-6_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43399-6

  • Online ISBN: 978-3-540-45993-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics