Skip to main content

Length Estimation for Curves with Different Samplings

  • Chapter
  • First Online:
Digital and Image Geometry

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2243))

Abstract

This paper looks at the problem of approximating the length of the unknown parametric curve γ : [0, 1] → ℝn from points qi = γ(ti), where the parameters ti are not given. When the ti are uniformly distributed Lagrange interpolation by piecewise polynomials provides efficient length estimates, but in other cases this method can behave very badly [15]. In the present paper we apply this simple algorithm when the ti are sampled in what we call an ε-uniform fashion, where 0 ≤ ε ≤ 1. Convergence of length estimates using Lagrange interpolants is not as rapid as for uniform sampling, but better than for some of the examples of [15]. As a side-issue we also consider the task of approximating γ up to parameterization, and numerical experiments are carried out to investigate sharpness of our theoretical results. The results may be of interest in computer vision, computer graphics, approximation and complexity theory, digital and computational geometry, and digital image analysis.

This research was performed at the University of Western Australia, while the third author was visiting under the UWA Gledden Visiting Fellowship scheme.1,2 Additional support was received under an Australian Research Council Small Grant1 and under an Alexander von Humboldt Research Fellowship.1b

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asano T., Kawamura Y., Klette R., Obokkata K. (2000) A new approximation scheme for digital objects and curve length estimation. In: Cree M. J., Steyn-Ross A. (Eds) Proceedings of Image and Vision Computing Conference, Hamilton, New Zealand. November 27–November 29, 2000. Department of Physics and Electronic Engineering, University of Waikato Press, 26–31

    Google Scholar 

  2. Barsky B. A., DeRose T. D. (1989) Geometric continuity of parametric curves: three equivalent characterizations. IEEE. Comp. Graph. Appl. 9, (6):60–68

    Article  Google Scholar 

  3. Boehm W., Farin G., Kahmann J. (1984) A survey of curve and surface methods in CAGD. Comput. Aid. Geom. Des. 1, 1–60

    Article  MATH  Google Scholar 

  4. Bülow T., Klette R. (2000) Rubber band algorithm for estimating the length of digitized space-curves. In: Sneliu A., Villanva V. V., Vanrell M., Alquézar R., Crowley J., Shirai Y. (Eds) Proceedings of 15th International Conference on Pattern Recognition, Barcelona, Spain. September 3–September 8, 2000. IEEE, Vol. III, 551–555

    Google Scholar 

  5. Dabrowska D., Kowalski M. A. (1998) Approximating band-and energy-limited signals in the presence of noise. J. Complexity 14, 557–570

    Article  MATH  MathSciNet  Google Scholar 

  6. Dorst L., Smeulders A. W. M. (1991) Discrete straight line segments: parameters, primitives and properties. In: Melter R., Bhattacharya P., Rosenfeld A. (Eds) Ser. Contemp. Maths, Vol. 119. Amer. Math. Soc., 45–62

    Google Scholar 

  7. Epstein M. P. (1976) On the influence of parametrization in parametric interpolation. SIAM. J. Numer. Anal. 13, (2):261–268

    Article  MATH  MathSciNet  Google Scholar 

  8. Hoschek J. (1988) Intrinsic parametrization for approximation. Comput. Aid. Geom. Des. 5, 27–31

    Article  MATH  MathSciNet  Google Scholar 

  9. Klette R. (1998) Approximation and representation of 3D objects. In: Klette R., Rosenfeld A., Sloboda F. (Eds) Advances in Digital and Computational Geometry. Springer, Singapore, 161–194

    Google Scholar 

  10. Klette R., Bülow T. (2000) Critical edges in simple cube-curves. In: Borgefors G., Nyström I., Sanniti di Baja G. (Eds) Proceedings of 9th Discrete Geometry for Computer Imagery Conference, Uppsala, Sweden, December 13–December 15, 2000. Springer LNCS Vol. 1953, 467–478

    Google Scholar 

  11. Klette R., Kovalevsky V., Yip B. (1999) On the length estimation of digital curves. In: Latecki L. J., Melter R. A., Mount D. M., Wu A. Y. (Eds) Proceedings of SPIE Conference, Vision Geometry VIII, Denver, USA, July 19–July 20, 1999. The International Society for Optical Engineering, 3811:52–63

    Google Scholar 

  12. Klette R., Yip. B. (2000) The length of digital curves. Machine Graphics and Vision 9, 673–703

    Google Scholar 

  13. Milnor J. (1963) Morse Theory. Annals of Math. Studies 51, Princeton University Press

    Google Scholar 

  14. Moran P. A. P. (1966) Measuring the length of a curve. Biometrika 53, (3–4):359–364

    MATH  MathSciNet  Google Scholar 

  15. Noakes L., Kozera, R. More-or-less-uniform sampling and lengths of curves. Quart. Appl. Maths. In press

    Google Scholar 

  16. Noakes L., Kozera R., Klette R. (2001) Length estimation for curves with ε-uniform sampling. In: Skarbek W. (Ed.) Proceedings of 9th International Conference on Computer Analysis of Images and Patterns, Warsaw, Poland, September 5–September 7, 2001. Springer LNCS Vol. 2124. In press

    Google Scholar 

  17. Piegl L., Tiller W. (1997) The NURBS Book. Springer, Berlin

    Google Scholar 

  18. Plaskota L. (1996) Noisy Information and Computational Complexity. Cambridge Uni. Press, Cambridge

    MATH  Google Scholar 

  19. Sederberg T. W., Zhao J., Zundel A. K. (1989) Approximate parametrization of algebraic curves. In: Strasser W., Seidel H. P. (Eds) Theory and Practice in Geometric Modelling. Springer, Berlin, 33–54

    Google Scholar 

  20. Sloboda F., Zaťko B., Stör J. (1998) On approximation of planar one-dimensional continua. In: Klette R., Rosenfeld A., Sloboda F. (Eds) Advances in Digital and Computational Geometry. Springer, Singapore, 113–160

    Google Scholar 

  21. Steinhaus H. (1930) Praxis der Rektifikation und zum Längenbegriff (In German). Akad. Wiss. Leipzig, Berlin 82, 120–130

    Google Scholar 

  22. Traub J. F., Werschulz A. G. (1998) Complexity and Information. Cambridge Uni. Press, Cambridge

    MATH  Google Scholar 

  23. Werschulz A. G., Woźniakowski H. What is the complexity of surface integration? J. Complexity. In press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Noakes, L., Kozera, R., Klette, R. (2001). Length Estimation for Curves with Different Samplings. In: Bertrand, G., Imiya, A., Klette, R. (eds) Digital and Image Geometry. Lecture Notes in Computer Science, vol 2243. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45576-0_20

Download citation

  • DOI: https://doi.org/10.1007/3-540-45576-0_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43079-7

  • Online ISBN: 978-3-540-45576-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics